95-23 # FULLY EXECUTED Contract No. 95-T0951 8/18/95 # STATE SUPERFUND CONTRACT NEWMARK OPERABLE UNIT NEWMARK GROUNDWATER CONTAMINATION SITE SFUND RECORDS CTR 34366 #### 1. GENERAL AUTHORITY This State Superfund Contract ("Contract") is entered into pursuant to the Comprehensive Environmental Response, Compensation and Liability Act of 1980 ("CERCLA"), 42 U.S.C. 9601 et seq., as amended, the National Oil and Hazardous Substances Pollution Contingency Plan, 55 Fed. Req. 8666 et seq., 40 CFR Part 300, March 8, 1990, (hereinafter referred to as the "NCP"), and other applicable Federal regulations, including 40 CFR Part 35, Subpart O, and 40 CFR Part 31 and California Health and Safety Code §\$25300 et seq. # 2. PURPOSE Pursuant to §104(c) of CERCLA, the United States Environmental Protection Agency ("EPA") and the Department of Toxic Substances Control ("DTSC"), on behalf of the State of California (the "State"), do hereby enter into this Contract to document the responsibilities of EPA, as lead agency, and the State, as support agency, during the remedial action at the Newmark Groundwater Contamination Site in San Bernardino, California (the "Site"), including the basic purpose, scope, and administration of this Contract. The Governor of California has designated DTSC to represent the State with respect to EPA-lead response actions, including the remedial action at the Site pursuant to 40 CFR The parties acknowledge and agree that this Contract is intended to obtain the required CERCLA assurances pursuant to $\S\S104(c)(3)$, 104(c)(9), and 104(j) of CERCLA, as amended, and to document State involvement in the remedial action cleanup process, pursuant to §121(f) of CERCLA, as amended, and §300.515(g) of the NCP to the extent applicable. the groundwater remedy at the Site consists of the Newmark Operable Unit and the Muscoy Plume Operable Unit. This Contract covers groundwater remediation at the Newmark Operable Unit. A separate contract will cover groundwater remediation at the Muscoy Plume Operable Unit. The remedial action at the Newmark Operable Unit involves treatment or other measures to restore groundwater quality to a level that assures protection of human health and the environment. Pursuant to 40 CFR 300.435(f)(3), the operation of such treatment or other measures for a period of up to ten years after the remedy becomes operational and functional is considered # **DEPARTMENT OF TOXIC SUBSTANCES CONTROL** 400 P STREET, 4TH FLOOR P.O. BOX 806 SACRAMENTO, CA 95812-0806 (916) 323-8150 SFUND RECORDS CTR 2363-00397 SEP 1 8 1995 Kevin Mayer U.S. Environmental Protection Agency 75 Hawthorne Street, H-6-4 San Francisco, California 94105 Dear Mr. Mayer: Contract No. 95-T0951 The enclosed contract has been approved by the State and should be retained as your record of this agreement. Sincerely, Dix Powl Corine Creel Contract Analyst Procurements and Business Services Enclosure part of the remedial action. Activities required to maintain the effectiveness of such treatment or measures following the tenyear period or after the remedial action is complete, whichever is earlier, are considered operation and maintenance. Attached hereto as <u>Appendix A</u> is a site-specific Statement of Work ("SOW") for the Newmark Operable Unit that indicates the tasks to be performed for this remedial action and includes the estimated costs. The State's obligations with respect to operation and maintenance of the implemented remedial action are set forth in paragraph 23 of this Contract. # 3. SITE DESCRIPTION The site is known as the Newmark Groundwater Contamination Site and is located in San Bernardino, California. The Site is described in the Record of Decision (ROD) for the Newmark Operable Unit which is attached hereto as Appendix B. #### 4. DURATION OF THIS CONTRACT This Contract shall become effective upon execution by EPA and the State, and approval by the California Department of General Services, and shall remain in effect until the parties determine that the activities described in the SOW are complete or that the final reconciliation of remedial action costs for the Newmark Operable Unit has been satisfied, whichever is longer, but not longer than December 31, 2010; notwithstanding the foregoing, the CERCLA operation and maintenance assurance shall remain in effect for the expected life of such actions. EPA and the State may extend the duration of this Contract by amendment pursuant to Paragraph 31 below if additional time is needed to complete the remedial action, close out the remedial action or reconcile costs. If within 365 calendar days from the date of this Contract EPA has not awarded a construction contract for the work described in the SOW, the State may terminate this Contract by providing written notice of termination to EPA not more than 90 calendar days following the one year anniversary date of the Contract. #### 5. DESIGNATION OF PRIMARY CONTACTS AND THEIR RESPONSIBILITIES #### A. EPA Remedial Project Manager EPA's designated remedial project manager ("RPM") for this Contract is: Kevin Mayer U.S. Environmental Protection Agency 75 Hawthorne Street, H-6-4 San Francisco, CA 94105 (415) 744-2248 EPA may change its designated RPM by letter to the State signatories without amending this Contract. Such notice shall be deemed to incorporate such change into this Contract. # B. State Project Manager The State's designated State Project Manager ("SPM") for this Contract is: Peter Garcia California Environmental Protection Agency Department of Toxic Substances Control 245 W. Broadway, Suite 350 Long Beach, CA 90802 (310) 590-4913 The State may change its designated SPM by letter to the EPA signatories without amending this Contract. Such notice shall be deemed to incorporate such change into this Contract. C. The RPM, in consultation with the SPM, may make changes to the work outlined in the SOW that do not substantially alter the scope or increase the total cost of the remedial action at the Newmark Operable Unit without affecting the validity of this Contract. The RPM shall obtain approval from the SPM for any change order submitted to EPA for the site, where the change order would increase the cost of the Newmark Operable Unit by more than \$100,000. The RPM may assume that the SPM has approved a change order if the SPM does not respond to a request for approval within 14 calendar days from receipt of notification by the RPM. Any change to the work that substantially alters the scope of the remedial action at the Newmark Operable Unit or causes the total cost of the remedial action at the Newmark OU to exceed the total cost estimate specified in Section 16.A of this Contract, shall require an amendment to this Contract. #### 6. NEGATION OF AGENCY RELATIONSHIP Nothing contained in this Contract shall be construed to create an express or implied agency relationship between EPA and the State. EPA and its employees, agents, and contractors are not authorized to represent or act on behalf of the State in any matter relating to the subject matter of this Contract. The State and its employees, agents, and contractors is not authorized to represent or act on behalf of EPA in any matter relating to this Contract. # 7. SITE ACCESS #### A. Site Access EPA shall use its own authority to secure access to the Site and adjacent properties necessary for EPA or its contractors to conduct the remedial action undertaken pursuant to the ROD, including leases, rights-of-way and easements. The State may secure access under its own authority, and may request assistance from EPA as necessary. At EPA's request, the State shall obtain, or assist EPA in obtaining, any permits necessary to conduct the activities described in the ROD. # B. State Site Visits Insofar as EPA has access to the Site, representatives of the State shall have access to the Site to the same extent as EPA for the purpose of reviewing work in progress, subject to the State's compliance with the Site's safety plan. To the extent feasible, representatives of the State shall coordinate with the RPM prior to visiting the Site. # C. EPA Liability Waiver EPA shall not be responsible for any harm to any State representative or other person arising out of, or resulting from, any act or omission by the State in the course of an on-site visit. # D. State Liability Waiver The State shall not be responsible for any harm to any EPA representative or other person arising out of, or resulting from, any act or omission by EPA in the course of an on-site visit. # 8. THIRD PARTIES # A. Exclusion of Third Party Benefits This Contract benefits the State and EPA only and extends no benefit or right to any third party not a signatory hereto. #### B. Liability EPA assumes no liability to third parties with respect to losses due to bodily injury or property damage that exceed the limitations set forth in 28 U.S.C. §§ 1346(b), 2671-2680. To the extent permitted by State law, the State assumes no liability to any third parties with respect to losses due to bodily injury or property damage. #### 9. PROJECT SCHEDULE The anticipated date for awarding the contract or cooperative agreement for work at the Newmark Operable Unit is September 1995. EPA agrees to notify the State of any change in such anticipated award date. EPA shall furnish to the State a copy of the project schedule prepared by the contractor upon receipt thereof. Any change in the project schedule shall not affect the validity of this Contract. #### 10. STATE REVIEW # A. State Funding: MSCA Funds The State, at its own cost and expense, shall furnish the necessary personnel, materials, services, and facilities to perform its responsibilities under the terms of this Contract. In the event that the State is awarded separate funding for this Site under an EPA Management Assistance Multi-Site Cooperative Agreement ("MSCA"), the State may use such monies to furnish the necessary personnel, materials, services, and facilities to perform
its responsibilities under the terms of this Contract; provided, however, that MSCA funded in-kind services may not be used to satisfy the State's cost share for the Site. # B. <u>Submission of Comments</u> EPA, in consultation with the State, shall specify a binding time frame for the State to review and submit comments on matters relating to the implementation of the response action at the Newmark Operable Unit, subject to the time frames set forth in 40 CFR 300.515(h)(3). The RPM shall furnish, or arrange to have furnished, to the SPM in a reasonably timely manner the deliverables specified in Appendix C, and such other deliverables as the RPM, in consultation with the SPM, may determine to be appropriate for review and/or comment by the State. the State to review or submit comments on matters relating to the implementation of the response action within the time frames specified by the EPA shall be deemed an election not to review and submit comments thereon. Failure to timely review and comment shall not delay the project schedule. The RPM shall maintain communications with the SPM regarding receipt of comments and responses thereto. # 11. RECORDS ACCESS # A. <u>Site Information</u> At EPA's request, and to the extent allowed by State law, the State shall make available to EPA any information in its possession concerning the Site except privileged or confidential information which is not protected from disclosure under federal law. At the State's request and to the extent allowed by Federal law, EPA shall make available to the State any information in its possession concerning the Site except privileged or confidential information which is not protected from disclosure under State law. EPA and the State shall agree upon a schedule for the reasonable, prompt submission of information concerning the Site. # B. Financial Records EPA shall arrange to have furnished directly to the State a copy of the monthly progress report supplied by the contract manager summarizing the activities performed in the previous month and a copy of the payment estimate for the corresponding period. Such monthly progress reports shall serve as documentation of the State's cost share pursuant to Section 16 of this Contract. If requested by the State, EPA shall provide additional financial records in its possession, except privileged or confidential information which is not protected from disclosure under State law. # C. <u>Confidentiality</u> EPA shall not disclose information submitted by the State under a claim of confidentiality unless EPA is required to do so by Federal law and has given the State advance notice of its intent to release that information. Absent notice of such claim, EPA may make said information available to the public without further notice. The State shall not disclose information submitted by EPA under a claim of confidentiality unless the State is required to do so by State law and has given EPA advance notice of its intent to release that information. Absent notice of such claim, the State may make said information available to the public without further notice. # 12. RECORDS RETENTION EPA and the State shall maintain all of their respective financial and programmatic records, supporting documents, statistical records, and other records related to the Site for a minimum of ten years following the submission of the final reconciliation of remedial action costs. If any litigation, claim, negotiation, audit, cost recovery, or other action involving the records has been started before the expiration of the ten-year period, EPA and the State shall retain such records until completion of the action and resolution of all issues which arise from it, or until the end of the regular ten-year period, whichever is later. Microform copying must be performed in accordance with the technical regulations and records management procedures contained in 36 CFR Part 1230 and EPA Order 2160, respectively. # 13. CERCLA REQUIREMENTS EPA and the State intend to follow all applicable program requirements, including CERCLA, the NCP, and EPA policy and guidance with respect to the remedial action for the Site. #### 14. OTHER SITE AGREEMENTS All site-specific agreements concerning the Site, including, but not limited to, state cooperative agreements, state superfund contracts, consent agreements, and administrative orders, are as follows: | Type of Agreement | <u>Signatories</u> | <u>Date</u> | |-----------------------|---|---| | Cooperative Agreement | EPA,
City of San
Bernardino
Municipal
Water Departm | 9/95
(anticpated
award date)
ent | Pursuant to the above-referenced Cooperative Agreement, the City of San Bernardino Municipal Water Department (SBMWD) will perform certain parts of the remedial action at the Newmark Operable Unit under the direction of EPA. EPA remains lead agency for the remedial action. The State hereby consents to the above-referenced Cooperative Agreement between EPA and SBMWD and certifies that SBMWD has the legal authority to enter into this Cooperative Agreement as a political subdivision of the State. #### 15. CERCLA ASSURANCE: COST SHARE # A. Cost Share Percentage Sections 104(c)(3) and 104(d)(1) of CERCLA, as amended, and 40 CFR 300.510(b)(1) require that EPA determine whether the Site was publicly or privately operated at the time of the release, in order to determine the State's cost share. As the Site was not operated by the State or a political subdivision thereof at the time of the release, the State's cost share is ten percent (10%) of the remedial action costs. # B. <u>Cost Share Period</u> i. Pursuant to Section 104(c)(6) of CERCLA, as amended, and 40 CFR 300.435(f) of the NCP, EPA is authorized to cost share in the restoration of groundwater for a period of up to ten years after the groundwater remedy becomes operational and functional or until the remedy achieves the level of protectiveness defined in the ROD, whichever is earlier. For purposes of this Contract, and pursuant to 40 CFR 300.435(f), a groundwater remedy shall be deemed operational and functional one year after construction is complete, or when EPA and the State determine that the remedy is functioning properly and performing as designed, whichever is earlier. EPA and the State may extend the one-year time period by amending this Contract pursuant to paragraph 31 below. ii. Since the State has elected not to take the lead for groundwater restoration, EPA shall conduct such restoration. The State assures payment of its cost share obligation for the actual cost of the groundwater restoration, subject to Section 16(c)(i) of this Contract. The ten-year time period shall adhere to the statutory provisions set forth in 40 CFR 300.435(f)(3) and 40 CFR 300.435(f)(4) of the NCP. # 16. COST-SHARE CONDITIONS # A. Cost Estimate The estimated cost of the Newmark Operable Unit remedial action (excluding EPA's indirect and intramural costs) is \$29,907,000 (adjusted for inflation). This estimate is derived from the Newmark Operable Unit Remedial Investigation/Feasibility Study, the Cooperative Agreement referenced in paragraph 14 of this Contract, the Newmark Operable Unit Record of Decision, and the Newmark remedial design documents, and includes contingencies for change orders and construction management services. Based on the foregoing, the State's cost share presently is estimated to be \$2,990,700. The State explicitly reserves its right to dispute this calaculation of the State cost share as it relates to past State remedial action expenditures for which CERCLA credit was awarded. # B. State Credit - i. CERCLA credit may be applied to offset the State's cost-share requirements in this Contract. Credits are limited to site-specific expenses that EPA determines to be reasonable, documented, direct, extra-mural, out-of-pocket expenditures of non-Federal funds that have not been previously applied or reimbursed. The State declares credit for costs incurred at the Site. - ii. The State has claimed CERCLA credit for costs incurred at the Site which the State incurred for remedial action after October 17, 1986. The State has submitted technical and financial documentation to support this credit declaration pursuant to 40 CFR 35.6285(c)(2)(i). Based on the documentation submitted by the State, EPA has concluded as a preliminary matter that the State is entitled to a credit of \$5,109,115. In the event that subsequent verification reveals less than \$5,109,115, the State shall pay the difference and document such in this Contract. Based on the cost estimate in Section 16.A of this Contract, it is anticipated that approximately \$2,990,700 of the State's CERCLA credit shall be applied to remedial action costs at the Newmark Operable Unit. The remaining credit shall be applied to all other remedial action costs at the Site. EPA shall not reimburse excess credit; provided, however that EPA may approve the application of excess credit to another site. # C. Payment Terms - i. On or before February 28 of each year of this Contract, EPA shall submit to the State an invoice for the State's ten percent (10%) cost share for such portion of the work identified in the SOW as was completed during the applicable billing period. Each invoice shall be accompanied by a cost summary which indicates the name of the site, the billing period, the general contractor or state political subdivision that performed the work during such billing period, the identification number assigned to the general contractor or state political subdivisión, and the total costs incurred during the period for which EPA is billing the The invoice shall specify the amount of CERCLA credit available to offset the State cost share and shall specify the amount due, if any, after application of the available CERCLA credit. EPA and the State anticipate that the State's cost
share will be covered by the credit and that no additional State payment will be required. EPA and the State have therefore agreed to defer the negotiation of specific payment terms until such time as it appears to either party that additional State payments may be required. At the request of either EPA or the State, the parties shall negotiate an amendment to this Contract setting forth specific payment terms. The State assures payment of its cost share obligation for actual remedial action costs at the Newmark Operable Unit, which shall be settled at reconciliation pursuant to Paragraph 32 below, and which shall not exceed \$2,990,700. The State acknowledges that such assurance may require the State to seek additional appropriations to cover the work outlined in the SOW; provided, however, that the State's cost share obligation may only be increased above the estimated cost set forth in Paragraph 16.A by an amendment to this Contract. The State shall use its best efforts to obtain authorization of funds necessary to meet its assurance to pay its cost share obligation for actual costs of the remedial action at the Site in accordance with State law; notwithstanding the foregoing, nothing contained herein shall be interpreted as a commitment to appropriate, obligate or pay funds in contravention of State law. - ii. Costs incurred by the State to off-set cost-share requirements shall be verified and documented pursuant to the Cooperative Agreement identified in Paragraph 14 of this Contract. Except as otherwise provided in the Cooperative Agreement, no in-kind services shall apply to the State's cost-share. Payment terms may be adjusted only by amendment to this Contract, pursuant to paragraph 31 below. An in-kind match may not be applied to the State's cost-share. iii. All State payments shall be made payable to EPA and sent to the Regional Financial Management Office specified below: United States Environmental Protection Agency Financial Management Office P.O. Box 360863M Pittsburgh, PA 15251 # 17. EMERGENCY RESPONSE ACTIVITIES Nothing in this Contract shall be construed to restrict, impair or otherwise affect the authority of EPA or the State to carry out emergency response activities, including removals. Notwithstanding the foregoing, any emergency response activities at the Site shall not increase the State's financial obligations under this Contract. # 18. CERCLA ASSURANCE: 20-YEAR WASTE CAPACITY ASSURANCE EPA's 1995 National Assessment of hazardous waste treatment and disposal capacity shows that there is adequate national capacity through the year 2013. This assessment included data provided by the State. Based upon the assessment and other data, as appropriate, EPA believes that there will be adequate national hazardous waste treatment and disposal capacity during the 20-year period following signature of this Contract. The State hereby assures the availability of hazardous waste treatment or disposal facilities for 20 years following signature of this Contract pursuant to CERCLA 104(c)(9), 42 U.S.C. 9604(c)(9). # 19. CERCLA ASSURANCE: OFF-SITE STORAGE, TREATMENT, OR DISPOSAL Pursuant to 104(c)(3)(B) and 121(d)(3) of CERCLA, as amended, EPA and the State have determined that off-site treatment, storage, or disposal of hazardous substances may be required for this remedial action. EPA or its representative, in its invitation for bids for remedial action, shall require bidders to provide adequate capacity for waste disposal at a facility (or facilities) that, at a minimum, meet(s) the requirements of Subtitle C of the Solid Waste Disposal Act. EPA's selection of a contractor shall satisfy such assurance. In the event that EPA is not able to find a bidder to provide adequate capacity for waste disposal, the State shall assist EPA in locating a bidder with an adequate waste disposal capacity. #### 20. NOTIFICATION OF TRANSFERS OF HAZARDOUS WASTE Pursuant to 40 CFR 35.6120, EPA or the State must provide written notification prior to the off-site shipment of hazardous waste from the Site to an out-of-State waste management facility, to: (i) the appropriate State environmental official for the State in which the waste management facility is located; and/or (ii) the appropriate Indian Tribal official who has jurisdictional authority in the area where the waste management facility is located. # 21. CERCLA ASSURANCE: REAL PROPERTY ACQUISITION The implementation of the remedial action may require the acquisition of an interest in real property. Pursuant to the Cooperative Agreement between EPA and the City of San Bernardino Municipal Water Department (SBMWD) referenced in paragraph 14 of this Contract, SBMWD will acquire any interests in real property necessary to implement the remedial action. In the event that SBMWD does not perform such real property acquisition, the State shall acquire any interests in real property necessary to implement the remedial action. If the State is not able to acquire such interest, EPA shall acquire such interest, and the State shall accept the transfer of such interest on or before completion of the remedial action. #### 22. REMEDY SHAKEDOWN [See paragraph 15.B.] #### 23. CERCLA ASSURANCE: OPERATION AND MAINTENANCE The State hereby assures that the operation and maintenance (O&M) of the implemented remedial action at the Newmark Operable Unit provided under this Contract will remain in effect for the expected life of such remedial action pursuant to Section 104(c)(3)(A) of CERCLA, as amended. In addition, the State assures that institutional controls will be monitored and retained as part of the State's O&M obligations. The State shall use best efforts to secure and maintain authorization of funds necessary to undertake its O&M obligations hereunder; notwithstanding the foregoing, nothing contained herein shall be interpreted as a commitment to appropriate, obligate or pay funds in contravention of State law. # 24. JOINT INSPECTION OF THE REMEDY # A. Prefinal Inspection i. The RPM, in consultation with the SPM, shall conduct a prefinal inspection upon completion of the construction work to determine whether there are outstanding items which remain to be completed or corrected. The RPM shall provide such notice to the SPM as shall reasonably afford the SPM an opportunity to accompany the RPM on such inspection. The RPM shall prepare a prefinal inspection report summarizing any such outstanding items and shall furnish a copy of such report to the SPM. #### B. Final Inspection The RPM, in consultation with the SPM, shall conduct a final inspection upon completion of any outstanding construction items for the remedial action at the Newmark Operable Unit. The RPM shall provide such notice to the SPM as shall reasonably afford the SPM an opportunity to accompany the RPM on such inspection. The final inspection will consist of a walk-through inspection of the project site, and will focus on the outstanding construction items identified in the prefinal inspection. If the RPM determines that any items remain outstanding or uncorrected, the inspection shall be considered a prefinal inspection and the RPM shall prepare another prefinal inspection report. # C. Remedial Action Report Upon satisfactory completion of the final inspection, EPA will provide to the State a copy of the remedial action report for the Newmark Operable Unit. # D. Acceptance of the Work EPA, in consultation with the State, shall determine that the activities described in the SOW have been completed. The EPA Regional Administrator shall provide written notice to the State that EPA has accepted the completed project from the construction contractor. # E. Acceptance of the Remedy EPA and the State shall review the remedial action report. The RPM shall coordinate with the SPM to obtain the State's concurrence that the remedy is complete and performing adequately. Enforcement actions and other necessary activities may proceed independent of completion of construction and reconciliation of costs; NPL deletion may proceed independent of reconciliation of costs. # 25. NPL DELETION EPA shall consult and provide the State with the criteria used to determine the effectiveness of the remedy as well as the rationale for determining completion of the remedy, and for delisting the Site from the National Priorities List (NPL). #### 26. RESPONSIBLE PARTY ACTIVITIES If at any time during the period of this Contract a responsible party comes forward to perform any work covered by this Contract, EPA and the State shall amend or terminate this Contract. # 27. ENFORCEMENT Nothing contained in this Contract shall waive, or be deemed to waive, EPA's right to bring an action against any person or persons for liability under §§ 106 or 107 of CERCLA, or any other statutory provision or common law. Nothing contained in this Contract shall waive, or be deemed to waive, the State's right to bring an action against any person or persons for liability under the California Health and Safety Code, or any other statutory provision or common law. # 28. LITIGATION AND COST RECOVERY EPA and the State may be entitled to assert claims against a third party (herein referred to as a "potentially responsible party" or "PRP") for reimbursement of any services, materials, monies or other items of value expended by EPA or the State for Fund-financed response activities. # 29. ISSUE RESOLUTION Any disagreements arising under this Contract shall be resolved to the extent possible by the RPM and the SPM. The RPM and the SPM, in consultation with their respective supervisors, shall use their best efforts to resolve disagreements informally. # 30. SANCTIONS FOR FAILURE TO COMPLY If either party fails to comply with the terms of this Contract, and if the parties have been unable to resolve the matter informally among themselves, then either party may proceed as set forth in 40 C.F.R. Section 35.6805, which is incorporated herein by reference as if fully stated herein.
31. AMENDMENT EPA and the State may amend this Contract, in writing, for reasons which include, but are not limited to, cost revisions or modifications of the remedial action. # 32. RECONCILIATION PROVISION Pursuant to 40 CFR 35.6805(k) and subject to Paragraph 4 hereof, this Contract shall remain in effect until the financial settlement of project costs and final reconciliation of response costs (including change orders, claims, overpayments, reimbursements, etc) have been completed, to ensure that EPA and the State have satisfied their cost-share requirements specified in paragraph 15 above. EPA will not use overpayments by the State to satisfy obligations at another site. In the event that the payment terms above do not cover the cost of the remedial action, EPA will bill the State for the State cost share. Final reconciliation of remedial action costs by EPA shall follow acceptance of the remedy by both EPA and the State and is not contingent upon deletion of the Site from the NPL. At the time of such reconciliation, the State may request that EPA furnish to the State documents supporting costs incurred by EPA. Contractual resolutions and final audit determinations that impact the Fund financed remedial action may require an amendment to this Contract pursuant to Paragraph 31. # 33. CONCLUSION OF THE CONTRACT Subject to Paragraph 4 hereof, this Contract shall conclude when all of the following requirements have been met: (i) response activities at the Newmark Operable Unit have been satisfactorily completed and payments have been made as specified under paragraphs 15 and 16 which address cost share; (ii) the Financial Management Officer has a final accounting of all project costs, including change orders and contractor claims, pursuant to paragraph 32 above; and (iii) the State has submitted all of its cost share payments to EPA, has undertaken responsibility for O&M, and if applicable, has accepted all interest in real property pursuant to 40 CFR 35.6805(i)(4). # 34. SEVERABILITY If any one or more of the provisions contained in this Contract shall for any reason be held to be invalid, illegal or unenforceable in any respect, then such provision or provisions shall be deemed severable from the remaining provisions contained in this Contract and such invalidity, illegality or unenforceability shall not affect any other provision of this Contract, and this Contract shall be construed as if such invalid or illegal or unenforceable provision had never been contained herein. # 35. DRUG FREE WORKPLACE EPA acknowledges that it is subject to the Drug Free Workplace Act of 1988, as implemented by 40 C.F.R. §§ 23.500-23.506. # 36. <u>AUTHORITY</u> Each undersigned representative of the parties certifies that he or she is fully authorized to enter into the terms and conditions of this Contract and to legally bind such party to this Contract. In witness whereof, the parties hereto have executed this Contract in six (6) copies, each of which shall be deemed an original. UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Jeffrey Zelikson, Director Hazardous Waste Management Division U.S. Environmental Protection Agency, Region IX STATE OF CALIFORNIA Jesse R. Huff, Director Department of Toxic Substances Control California Environmental Protection Agency Marvin H. Philo, Chief Office of Business Services Department of Toxic Substances Control California Environmental Protection Agency Department of General Services Use Only tmint of General Services Ass't. Chief Counsel Statement of Work - Remedial Action, Newmark Operable Unit, Newmark Groundwater Contamination Superfund Site, San Bernardino, CA The Remedial Action for the Newmark Operable Unit of the Newmark Groundwater Contamination Superfund Site in San Bernardino, CA, shall be consistent with the Record of Decision signed on August 4, 1993. Designs and specifications for the construction of the remedy have been developed by EPA during the Remedial Design phase of the project. Certain portions of the design, including the extraction well design, pump requirements, and monitoring well design, are in progress and cannot be finalized until site access for the wells has been secured and logs of pilot wells have been analyzed. #### Construction - North Plant The City of San Bernardino Municipal Water Department (SBMWD), as the recipient of an EPA Cooperative Agreement, shall obtain access for the sites of two groundwater extraction wells south of the Newmark wellfield (located at 48th Street and Western Avenue in northern San Bernardino). EPA shall approve the well locations. SBMWD shall also secure access for pipeline routing between the wells and the treatment plant location at the Newmark wellfield. SBMWD shall drill pilot borings at the well sites and conduct lithological and geophysical logging of the borings. EPA contractors shall analyze the results and finalize the well designs. SBMWD shall conduct drawdown and recovery tests on the wells and shall dispose of the water and drill cuttings produced during well construction and testing in accordance with all applicable laws and regulations. EPA contractors shall analyze the drawdown tests and finalize pump requirements. SBMWD shall construct, equip test and disinfect the wells, wellheads, water transmission pipelines and connections to the treatment plant. SBMWD shall mechanically test the system and provide EPA with information needed for a construction completion report. Design tasks performed by EPA contractors during the construction will be included in the Remedial Design phase budget. EPA contractors shall provide construction project oversight for the SBMWD construction. EPA contractors shall construct a "dual-pass" Granular Activated Carbon (GAC) treatment system adjacent to the existing air-stripping treatment system, incorporating portions of the existing pipelines, connections and controls. The existing air-stripping system will remain operable. EPA contractors shall mechanically test the treatment plant and prepare the construction completion report. EPA contractors shall also finalize the Operation and Maintenance manuals. #### Construction - South Plant The City of San Bernardino Municipal Water Department (SBMWD), as the recipient of an EPA Cooperative Agreement, shall obtain access for the site of five groundwater extraction wells. The wells will be located within several blocks of Base Line Street, between 'E' Street and Waterman Avenue. The final locations shall be approved by EPA. SBMWD shall also secure access for pipeline routing between the wells and the treatment plant locations (at the 17th and Sierra treatment plant and at the Waterman treatment plant). SBMWD shall drill pilot borings at the well sites, and conduct lithological and geophysical logging of the borings. EPA contractors shall analyze the results and finalize the well designs. SBMWD shall conduct drawdown and recovery tests on the wells and shall dispose of the water and drill cuttings produced during well construction and testing in accordance with all applicable laws and regulations. EPA contractors shall analyze the drawdown tests and finalize pump requirements. SBMWD shall construct, equip, test and disinfect the wells, wellheads, water transmission pipelines and connections to the treatment plant. The South Plant systems are designed to route 2000 gpm to the 17th and Sierra treatment plant and approximately 5000 gpm to the Waterman treatment facility. Transmission pipelines shall be routed in the same trench to the extent possible, and valving will allow several wells to pump to either treatment system. SBMWD shall mechanically test the systems and provide EPA with information needed for a construction completion report. EPA contractors shall provide construction project oversight for the SBMWD construction. EPA contractors shall make relatively minor adjustments to the existing 17th and Sierra GAC system to allow for "dual-pass" operation. At the Waterman facility, EPA contractors shall construct a "dual-pass" Granular Activated Carbon (GAC) treatment system adjacent to the existing air-stripping treatment system, incorporating portions of the existing pipelines, connections and controls. The existing air-stripping system will remain operable. EPA contractors shall mechanically test the treatment plant and prepare the construction completion report. EPA contractors shall also finalize the Operation and Maintenance manuals. # **Monitoring Well Construction** Following the construction of the extraction wells, EPA contractors shall finalize the design of observation well systems at both the North and South portions of the Newmark Remedial Action to monitor the effectiveness of the action. The wells shall be designed to observe both water levels and water quality. EPA shall work with SBMWD to obtain access to well sites, which are assumed to be in existing public right-of-way. EPA contractors shall construct and equip the well and provide lithological and geophysical logging of the wells during construction. # Operation and Maintenance Following approved completion of construction and mechanical testing, SBMWD shall operate and maintain each extraction and treatment system during a period of system testing of approximately one year. EPA contractors shall monitor the effectiveness of the plume containment. SBMWD shall monitor the treatment system performance. EPA contractors shall provide documentation sufficient for EPA and the State to determine whether the remedial action has achieved the objectives of the Record of Decision. The remedy becomes "operational and functional" either one year after construction is complete, or when the remedy is determined concurrently by EPA and the State to be functioning properly and is performing as designed, whichever is earlier. EPA may grant extensions to the one year period, as appropriate. Under the terms of the Cooperative Agreement with EPA, SBMWD shall operate and maintain the
extraction and treatment systems, for ten years after the remedy is "operational and functional" or until the remedy is complete, whichever is earlier ("the project period"). EPA shall operate the monitoring system for approximately one year. Following a transition period, SBMWD shall operate the monitoring system until conclusion of the project period. | Table 1. Newmark Operable Unit - Construction Cost Estimate | | | | | | |---|-------------|-------------------|--------------|--|--| | | South Plant | North Plant | TOTAL | | | | * Well Site Access | \$300,000 | \$120,000 | \$420,000 | | | | * Well Drilling (2 North, 5 South) | \$1,490,000 | \$270,000 | \$1,760,000 | | | | * Well Equipment (pumps & housing) | \$750,000 | \$300,000 | \$1,050,000 | | | | Pipeline | \$2,700,000 | \$250,000 | \$2,950,000 | | | | Construction Oversight | \$200,00 | \$50,000 | \$250,000 | | | | Treatment System | \$2,800,000 | \$2,230,000 | \$5,030,000 | | | | * Monitoring System | \$1,060,000 | \$ 315,000 | \$1,375,000 | | | | Subtotal-Future Construction | \$9,716,520 | \$3,561,760 | \$12,835,000 | | | | Past State Remedial Action Expenditures | | | \$5,109,000 | | | | Total | | | \$17,944,000 | | | ^{* -} Activities performed by San Bernardino Municipal Water Department pursuant to Cooperative Agreement with EPA | Table 2. Newmark Operable Unit - Annual Operation and Maintenance Cost Estimate | | | | | | |---|-------------|-------------|-----------|--|--| | | South Plant | North Plant | TOTAL | | | | Carbon Usage (\$1/lb) | \$258,000 | \$156,000 | \$414,000 | | | | Material and Labor * | \$129,000 | \$65,000 | \$209,000 | | | | Power (10 cent/ KWH)** | \$129,000 | \$65,000 | \$209,000 | | | | Monitoring System | \$82,000 | \$50,000 | \$132,000 | | | | Total | \$598,000 | \$336,000 | \$934,000 | | | ^{• -} Cost for material/labor/extraordinary distribution costs estimated at \$10/acre-foot Eleven years of O&M (including one year O&F) adjusted for 3% annual inflation totals \$11,963,000 ^{** -} Cost for higher power costs (standard vs. night-only rates) estimated at \$10/acre-foot # NEWMARK OPERABLE UNIT RECORD OF DECISION PART I: **DECLARATION** PART II: DECISION SUMMARY PART III: RESPONSIVENESS SUMMARY # NEWMARK GROUNDWATER CONTAMINATION SUPERFUND SITE SAN BERNARDINO, CALIFORNIA United States Environmental Protection Agency Region 9 - San Francisco, California # TABLE OF CONTENTS | | | | <u>Page</u> | No. | |------|-------|--|-------------|-----| | Part | I. | Declaration | | 1 | | Part | II. | Decision Summary | | 4 | | | 1.0 | Site Location and Description | | 4 | | | 2.0 | Site History | | 7 | | | 3.0 | Enforcement Activities | | 10 | | | 4.0 | Highlights of Community Participation | | 10 | | | 5.0 | Scope and Role of the Operable Unit | | 12 | | | 6.0 | Summary of Newmark OU Site
Characteristics | | 13 | | | 7.0 | Summary of Site Risks | | 13 | | | 8.0 | Description of Alternatives | | 16 | | | 9.0 | Summary of Comparative Analysis of Alternatives | | 18 | | | 10.0 | Applicable or Relevant and Appropriate Requirements | | 22 | | | 11.0 | The Selected Remedy | | 31 | | | 12.0 | Statutory Determinations | | 33 | | | 13.0 | Documentation of Significant Changes | | 34 | | Part | III. | Responsiveness Summary | | 35 | | | Execu | utive Summary | | 35 | | | Part | I - Responses to Written Comments | | 37 | | | Part | II - Responses to Comments and Questions at Public Meeting Held April 14, 19 | | 45 | # RECORD OF DECISION # NEWMARK OPERABLE UNIT INTERIM REMEDY #### PART I. DECLARATION # SITE NAME AND LOCATION Newmark Groundwater Contamination Superfund Site Newmark Operable Unit San Bernardino, California #### STATEMENT OF BASIS AND PURPOSE This decision document presents the selected remedial action for the Newmark Operable Unit, Newmark Groundwater Contamination Superfund site, chosen in accordance with CERCLA as amended by SARA and, to the extent practicable, the National Contingency Plan. This decision is based on the administrative record for this operable unit. In a letter to EPA dated July 29, 1993 the State of California concurred with the selected remedy for the Newmark OU. # ASSESSMENT OF THE SITE Actual or threatened releases of hazardous substances from this site, if not addressed by implementing the response action selected in this ROD, may present an imminent and substantial endangerment to public health, welfare or the environment. # DESCRIPTION OF THE REMEDY EPA has selected an interim remedy for the Newmark plume of groundwater contamination in the Newmark Groundwater Contamination Superfund Site. This portion of the site cleanup is referred to as the Newmark Operable Unit (OU). The Newmark OU is an interim action focusing on contamination in the underground water supply in the Bunker Hill Basin of San Bernardino, north and east of the Shandin Hills (Figures 1 and 2). The portion of the groundwater contamination west of the Shandin Hills, called the Muscoy OU, will be addressed in a separate action. An OU is a discrete action that comprises an incremental step toward comprehensively addressing Superfund site problems. The remedy and all of the alternatives presented in the feasibility study were developed to meet the following specific objectives for the Newmark OU: - To inhibit migration of groundwater contamination into clean portions of the aquifer; - To limit additional contamination from continuing to flow into the Newmark OU plume area; To begin to remove contaminants from the groundwater plume for eventual restoration of the aquifer to beneficial uses (This is a long-term project objective rather than an immediate objective of the interim action.) The remedy involves groundwater extraction (pumping) and treatment of 8,000 gallons per minute (gpm) in the vicinity of 14th Street, between Arrowhead and Waterman Avenues, at the leading edge of the contaminant plume, and an additional 4,000 gpm at the Newmark wellfield (near 48th Street and Little Mountain Drive) where the contamination enters the eastern part of the valley (Fig. 2). The exact number, location and other design specifics of new extraction wells will be determined during the remedial design phase of the project to inhibit the migration of the contaminant plume most effectively. All the extracted contaminated groundwater shall be treated to remove VOCs by either of two proven treatment technologies: granular activated carbon (GAC) filtration or air stripping. determined during the Feasibility Study (March 1993) that these treatment technologies are equally effective at removing VOCs and are similar in cost at this OU. Both technologies have been proven to be reliable in similar applications. It is acceptable to use one technology for the northern (Newmark wellfield) facility and the other at the southern treatment facility. As a result of comments received during the public comment period, EPA may use a modification of liquid phase GAC (Advanced Oxidation pretreatment) if this modification proves to be effective and economical during design phase testing and analysis. The VOC treatment technology which best meets the objectives of the remedy for the Newmark OU will be determined during the remedial design phase, when more detailed information is available to assess effectiveness and cost. After treatment, the water shall meet drinking water standards (maximum contaminant levels or MCLs) for VOCs. If air stripping treatment is selected, air emissions shall be treated using the best available control technology (e.g., vapor phase GAC) to ensure that all air emissions meet applicable or relevant and appropriate requirements. The treated water will be piped to the public water supply system for distribution. Groundwater monitoring wells will be installed and sampled regularly to help evaluate the effectiveness of the remedy. If the public water supply system does not accept any or all of the treated water (possibly due to water supply needs), any remaining portion of water will be recharged into the aquifer via reinjection wells near the edge of the plume. The number, location and design of the reinjection wells will be determined during the remedial design phase to best meet the objectives of the remedy and meet applicable or relevant and appropriate requirements. The total duration of the Newmark OU interim remedy will be 33 years, with the first three years for design and construction. EPA will review this action every five years throughout this interim remedy period and again at the conclusion of this period. The remedial action for the Newmark OU represents a discrete element in the overall long-term remediation of groundwater at the Newmark Groundwater Contamination Superfund Site. The objectives of this interim action (i.e. inhibiting migration of groundwater contamination to clean portions of the aquifer, controlling additional contamination from entering this portion of the aquifer, and beginning to remove contaminant mass from the aquifer in the Newmark Plume) would not be inconsistent with nor preclude implementation of any final, overall remedial action or actions selected by EPA in the future for the Newmark Groundwater Contamination Superfund Project. EPA is the lead agency for this project and the Department of Toxic Substances Control of the State of California Environmental Protection Agency is the support agency. #### **DECLARATION** This interim action is protective of human health and the environment, complies with Federal and State applicable or relevant and appropriate requirements directly associated with this action and is cost effective. This action utilizes permanent solutions and alternative treatment (or resource recovery) technologies to the maximum extent practicable, given the limited scope of the
action. Because this action does not constitute the final remedy for the site, the statutory preference for remedies that employ treatment that reduces toxicity, mobility, or volume as a principal element will be addressed at the time of the final response action. Subsequent actions are planned to fully address the principal threats at these sites. Because this remedy will result in hazardous substances remaining on-site above health-based levels, EPA shall conduct a review, pursuant to CERCLA Section 121, 42 U.S.C. Section 9621, at least once every five years after commencement of remedial action to ensure that the remedy continues to provide adequate protection of human health and the environment. John C. Wise Acting Regional Administrator # PART II. DECISION SUMMARY This Decision Summary provides an overview of the Newmark OU interim remedy, including a description of the nature and extent of contamination to be addressed, and the remedial alternatives, the comparative analysis of the remedial alternatives, a description of the selected remedy and the rationale for remedy selection. # 1.0 SITE LOCATION AND DESCRIPTION The Newmark OU is located within the Bunker Hill Basin (also known as the Upper Santa Ana River Basin) in San Bernardino, California. The following sections present a basin description, regulatory history, and a summary of the Remedial Investigation and Feasibility Study (RI/FS) activities within the Newmark Superfund Site. # 1.1 Description of the Bunker Hill Basin The Newmark Groundwater Contamination affects a large portion of a 110 square mile aquifer in the San Bernardino Valley of southern California. (Figure 1). The aquifer, known as the Bunker Hill Basin, is bounded by the San Bernardino and San Gabriel Mountains to the north, the Crafton Hills and badlands on the southeast, and by a hydrogeologic barrier formed by the San Jacinto fault along the southwest. (Figure 2) Water flowing from all parts of the aquifer join in a confined 'artesian zone' before leaving the basin where the Santa Ana River crosses the San Jacinto faultline. Coarse erosional material (alluvial and river channel deposits) have accumulated in the this area of the basin to depths of 400 to over 1900 feet, atop older formations that act as barriers to further vertical movement. A fold in one of these impermeable bottom formations forms the Shandin Hills (formerly called Bunker Hill in reference to military emplacements from the WWII era), which force groundwater flowing from the north and west to flow around either side rather than directly south toward the Santa Ana River. Most of the western portion of the basin is an unconfined aquifer, with no substantial barriers to infiltration from the surface. In the lowest area of the basin (the south-central portion around the Santa Ana River), several extensive clay layers have formed an aquitard, overlying and capping the water-bearing sand and gravel aquifers. This confined portion of the aquifer produces tremendous supplies of water for nearby communities. The aquifer receives rainfall and natural runoff from the surrounding mountains, collected floodwaters from rivers, creeks and washes, and water imported from outside the region that is spread over percolation basins. According to the San Bernardino Municipal Water District, the Bunker Hill Basin is capable of storing approximately 5 million acre-feet (1.6 trillion gallons) FIGURE 1. Location of study area. FIGURE 2. --Altitude of potentiometric surface and direction of ground-water movement, summer 1986. and producing 250,000 acre-feet (81 billion gallons) each year. Nearly a half-million residents of San Bernardino, Riverside and surrounding communities rely on this portion of the aquifer for at least part of their water supply. The Newmark OU lies almost entirely within the city of San Bernardino. Residential and commercial use predominates throughout the OU, although some industrial development has been identified. Very little of the area remains undeveloped. # Description and Background of the Newmark OU The solvents (tetrachloroethene, PCE, and trichloroethene, spreading from the Newmark Superfund site threaten approximately one-half of the Bunker Hill Basin, The EPA placed the Newmark site on the National Priorities List (NPL) in March, 1989. At that time, EPA believed the eastern (Newmark) plume of contamination to be completely separate from the western (Muscoy) groundwater contamination. Results of earlier investigations identified a possible contaminant source (a disposal pit for waste liquids at a former airport) near the Newmark wellfield. The EPA Remedial Investigation (RI) began in late 1990. 1992 eight sets of monitoring wells were drilled and sampled in the Newmark OU, and nearby city and state wells were also sampled by EPA. PCE and TCE were the most prevalent contaminants in all the contaminated wells. Other VOCs have also been detected in trace Results from the RI showed that the originally quantities. suspected source of the Newmark plume was not currently a source of Additional well drilling in the summer of 1992 contamination. traced groundwater contamination through a previously undiscovered underground channel flowing from the western (Muscoy) side of the The Newmark site was officially expanded in September, 1992 to include the Muscoy plume. EPA began additional RI studies for the Muscoy plume and finished a feasibility study (FS) for the Newmark OU which evaluated a range of cleanup alternatives for addressing the five mile long contaminated groundwater plume. The RI/FS report for the Newmark OU was finalized in March, 1993. #### 2.0 SITE HISTORY In 1980, the California Department of Health Services (DHS) initiated a monitoring program in San Bernardino to test for the presence of industrial chemicals in the water from public supply The results of initial tests and of subsequent testing revealed the presence of PCE and TCE contamination in large portions of the groundwater of the Bunker Hill Basin. Fourteen wells operated by the city of San Bernardino Water Department in the North San Bernardino / Muscoy area were found to contain concentrations of PCE and TCE above the state and federal MCLs of 5 parts per billion (ppb) for both TCE and PCE. solvents were found in wells scattered around the north, east and west sides of the Shandin Hills. (Figure 3) The affected wells had supplied nearly 25 percent of the water for the city of San Bernardino. As of 1993, a total of thirteen public water supply wells have been contaminated by the solvents apparently spreading from the Newmark plume, and seven water supply wells have been affected in the area of the Muscoy plume. Following investigations by the Santa Ana Regional Water Quality Control Board and California Department of Health Services (now the California EPA Department of Toxic Substances Control), the state provided over \$6 million to construct three water treatment systems, with a fourth under construction, to protect the public water supply. After years of testing it became apparent that the solvents in the groundwater were continuing to flow south, threatening many more wells operated by San Bernardino, Riverside and other communities. The state requested federal involvement to address this regional problem. It should be noted that the cities of San Bernardino, Riverside and other water agencies in the area closely monitor the quality of drinking water delivered to residents. The water served to residents meets all Federal and state drinking water requirements. The state investigations published in 1986 and 1989 both suggested that the widespread contamination in northern San Bernardino probably resulted from numerous small, unidentified sources. The Shandin Hills and nearby hill formations were assumed to separate the eastern (Newmark area) aquifer from the western (Muscoy area) aquifer, making it unlikely that all 14 wells could have been contaminated from a single source. Continued monitoring of existing water supply wells and monitoring wells constructed by the state established a record of contamination relatively uniform in composition and concentration throughout the area north and east of the Shandin Hills. This pattern strongly suggested a single plume in this area. photographic analysis completed Aerial was Environmental Monitoring Systems Laboratory in September, 1990. This analysis, along with interviews of witnesses, suggested that the primary source of contamination was a suspected solvent disposal pit ('cat pit') on the former site of the private San Bernardino Airport. This activity occurred from the late 1950's intermittently through the early 1970's. Several minor activities in different parts of the airport site were also identified as potential waste releases. No other sources could be identified between the disposal site and the closest uncontaminated wells upgradient. The plume from this single source would extend over four miles. The waste disposal pit was also within several hundred feet of the Newmark wellfield (four City of San Bernardino Water Department wells). These wells exhibited the highest concentration of contaminants measured in any wells in the area, nearly 200 μ g/l (parts per billion) of PCE. FIGURE 3: LOCATION OF PUBLIC WATER SUPPLY WELLS AND IDENTIFIED CONTAMINANT PLUMES IN THE BUNKER HILL GROUNDWATER BASIN In 1984-85, the area near the "cat pit", which was later identified as the probable contaminant source, was developed into a residential community. Based on information obtained during the Remedial Investigation, the San Bernardino Airport site is no longer suspected to be the source of the Newmark Plume. It is now believed that the principle source (or sources) lies on the west side of the Shandin Hills and likely contributes to both the Newmark and Muscoy Plumes. While ongoing investigations attempt to identify the source, EPA determined that the Newmark plume could be addressed as an
interim action (the Newmark OU). #### 3.0 ENFORCEMENT ACTIVITIES The results of the Remedial Investigation and other investigations undertaken by EPA and state agencies indicate that the project lead for the Newmark OU will remain with EPA until a probable source is located. Considerable effort was expended on a PRP search while the San Bernardino Airport site was suspected to be the source of the contamination. Results of the Remedial Investigation traced the source more than one mile upgradient of the suspected source. No residual contamination was found in the unsaturated zone or the upper portion of the aquifer immediately beneath former disposal pits. The airport site is no longer considered a likely source of the contamination. The focus of the ongoing PRP search will be potential sources located to the northwest of the Shandin Hills. These potential sources include Camp Ono (a WWII-era army base decommissioned in 1947 and subsequently developed for residential and commercial/industrial use), a closed county landfill, and an area of industrial development. The Department of Defense was sent a copy of the Newmark Proposed Plan at the start of the public comment period, along with an information request letter concerning the operations at the former Camp Ono. #### 4.0 HIGHLIGHTS OF COMMUNITY PARTICIPATION EPA's preferred alternative, as well as four other alternatives were described in EPA's Proposed Plan for the Newmark OU (March 1993). The Proposed Plan was in the form of a fact sheet and was distributed to all parties on EPA's mailing list for the Newmark project. The original 30 day public comment period was extended to 6 weeks (45 days) after EPA received requests for extensions from members of the public. The public comment period closed on May 5, 1993. EPA received approximately 50 comments. These comments and EPA's responses to these comments are summarized in Part III (the Responsiveness Summary) of this ROD. A press release to announce the release of the Proposed Plan was issued March 17, 1993. Notice of the public meeting as well as the availability of the Proposed Plan was published in the Inland Empire Sun on March 18, 1993. In addition, several newspaper articles were written about the remedial investigation, the feasibility study and the Proposed Plan for the Newmark OU including: Inland Empire Sun - March 18, 1993; Riverside Press-Enterprise - March 18, 1993. A map of the Newmark OU was provided in the Proposed Plan and the various newspaper articles published maps and described the area that would be impacted by the Newmark OU. A public meeting was held in the City of San Bernardino Council Chambers on April 14, 1993, to discuss EPA's preferred alternative and the other alternatives. At this meeting EPA gave a brief presentation regarding the Proposed Plan, answered questions, and accepted comments from members of the public. This meeting was broadcast live on the local cable channel. EPA expended considerable effort developing strong community relations. A Technical Advisory Committee has been successful in maintaining close communication with local and state agencies. For communication with the local community, three principle mechanisms have been employed: formal presentations (open houses, meetings with organizations and fact sheet distribution), contact with the print and electronic media and informal discussions with homeowners' associations and individuals. The San Bernardino and Riverside papers have published a number of positive and well-researched articles about the project. Major television networks broadcast reports of the drilling operation in February, 1992. The Project Manager participated in a 90 minute call-in talk show on the public television station in August, 1992. Invitations were accepted to speak at a city-wide Neighborhood Watch meeting and at a San Bernardino "town-hall" meeting sponsored by the California Water Education Foundation. Two open house meetings were held to introduce the field work in February, 1992, and another open house was held on-site for the community and press shortly after drilling began. Three fact sheets in addition to the Proposed Plan have been distributed. Three different home-owners' associations accepted EPA's offer for informal discussions of the project. Drilling around these communities was greatly facilitated by open communication. Presentations were made to the staff and teachers at a local school, and the Project Manager taught the 5th grade class about groundwater and chemical pollution as it relates to the Newmark site. # 5.0 SCOPE AND ROLE OF THE OPERABLE UNIT The interim remedial action for the Newmark OU represents a rete element in the overall long-term remediation of discrete element in the overall groundwater in the San Bernardino area. Since the source has not been identified, the final overall plan for the remediation of the entire Newmark Groundwater Contamination Site has not yet been determined. The Newmark plume constitutes a major portion of the contaminated aquifer and this remedy will be a significant step toward eventual remediation. EPA does not expect these objectives to be inconsistent with, nor preclude, any final action for the entire site. The objectives of the Newmark OU are: - To inhibit migration of groundwater contamination into clean portions of the aguifer; - To limit additional contamination from continuing to flow into the Newmark OU plume area; - To begin to remove contaminants from the groundwater plume for eventual restoration of the aquifer to beneficial uses (This is a long-term project objective rather than an immediate objective of the interim action.) The analysis of the no-action option indicates that unless this action is implemented, the contamination will continue to spread to clean areas of the aquifer which are currently used as important sources of drinking water. EPA is currently using the results of the Newmark OU remedial investigation in basinwide feasibility studies to address VOC contamination in the Muscoy OU and to investigate potential sources. As part of the Muscoy OU FS, EPA is revising and recalibrating the groundwater flow model for the entire site to incorporate the most recent data. When sufficient information is available on the contaminant source and transport from the source, EPA will review and evaluate various groundwater remediation options for the complete site. It is expected that the Newmark OU remedy will constitute an integral part of the complete remedy. EPA will continue to monitor aquifer behavior and contaminant transport as part of this interim action. The information gathered will be important in the analysis of a remedy for the entire Newmark site. # 6.0 SUMMARY OF NEWMARK OU SITE CHARACTERISTICS Results of EPA's Remedial Investigation provided critical understanding in three general areas: groundwater flow characteristics, contaminant identification and concentration, and potential for exposure through the unsaturated zone. The result that was least expected was that a significant flow of contaminated groundwater was entering the eastern (Newmark OU) side of the basin from the western portion (Muscoy OU). Most recharge to the Newmark OU part of the Bunker Hill Basin does originate along the San Bernardino Mountains to the north, and this source is not contaminated. Another important observation was that clay or silt layers that would inhibit vertical contaminant migration were not present in the monitoring well drilled near the leading edge of the plume. The contaminants cannot be expected to remain in an isolated vertical layer. A groundwater flow model was successfully developed to describe the aquifer behavior. The contaminants identified were predominantly chlorinated solvents. Tetrachloroethene (PCE) was found in all contaminated wells at concentrations less than 40 parts per billion (ppb). Trichloroethene (TCE) was the next most common contaminant, and never exceeded 10 ppb. Other related solvents were identified at concentrations below drinking water standards. Chlorofluorocarbons (freons) were also observed. Monitoring wells were constructed to collect samples at two or more depths at each well location. Generally, the highest concentrations of contaminants were found in the deeper wells. Typically, a well near bedrock (about 500 feet deep) would have PCE levels of 10 to 20 ppb while the well in the upper part of the aquifer would have PCE less than 2 ppb. Monitoring well data compared quite closely with data from nearby water production wells. Subsurface soil samples at the originally suspected source had no detectable levels of contaminants. Air samples from homes directly above the contaminant plume had no more volatile chemicals than samples from homes outside the plume area. Levels were not different from values observed in homes throughout the Los Angeles metropolitan area. These results confirmed that volatilization from the subsurface does not provide a measurable exposure pathway. # 7.0 SUMMARY OF SITE RISKS Baseline risk assessments are conducted at Superfund sites to fulfill one of the requirements of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The NCP (40 CFR Part 300) requires development of a baseline risk assessment at sites listed on the National Priorities List (NPL) under CERCLA. The CERCLA process for baseline risk assessments is intended to address both human health and the environment. However, due to the nature of the contamination at the site and the highly urbanized setting of the Newmark OU, the focus of the baseline risk assessment was on human health issues, rather than environmental issues. The objective of the baseline risk assessment for the Newmark OU was to evaluate the human health and environmental risks posed by the contaminated groundwater if it were to be used as a source of drinking water without treatment. The baseline risk assessment incorporated the water quality
information generated during the RI field investigation and sampling program to estimate current and future human health and environmental risks. The risk assessment was conducted in accordance with EPA quidance including: Guidance for Conducting Remedial Investigation and Feasibility Studies under CERCLA (USEPA, 1988), Risk Assessment Guidance for Superfund, Vol. I Health Evaluation Manual (Part A) and Vol. 2 Ecological Assessment (USEPA, 1989), The Exposure Factors Handbook (USEPA, 1989), and Risk Assessment Guidance for Superfund Human Health Risk Assessment, USEPA Region IX Recommendations (USEPA, 1989). A risk assessment involves the qualitative and quantitative characterization of potential health effects of specific chemicals on individuals or populations. The risk assessment process comprises four basic steps: 1) hazard identification, 2) doseresponse assessment, 3) exposure assessment, and 4) characterization. The purpose of each element is as follows: - Hazard identification characterizes the potential threat to human health and the environment posed by the detected constituents. - Dose response assessment critically examines toxicological data used to determine the relationship between the experimentally administered animal dose and the predicted response (e.g., cancer incidence) in a receptor. - Exposure assessment estimates the magnitude, frequency, and duration of human exposures to chemicals. - Risk characterization estimates the incidence. of or potential for an adverse health or environmental effect under the conditions of exposure defined in the exposure assessment. # Human Health Risk Assessment Risk assessments estimate the possibility that additional occurrences of cancer will result from exposure to contamination. The background probability of developing cancer from all causes in California is approximately one in four (or 250,000 in a million). An excess cancer risk of 1 in a million means that a person exposed to a certain level of contamination would increase the risk of developing cancer from 250,000 in a million to 250,001 in a million as a result of the exposure. EPA considers excess cancer risks greater than 100 in a million to be unacceptable. In preparing risk assessments, EPA uses very conservative assumptions that weigh in favor of protecting public health. For example, EPA may assume that individuals consume two liters of drinking water from wells situated within a contaminant plume every day for a 30-year period, even though typical exposure to the chemical would be far less. included two potential exposure routes (ways contamination gets into the body) in the risk assessment: - drinking the groundwater during residential use; and - inhaling the chemicals in groundwater as vapors during showering. Skin contact with contaminated water was also considered but EPA found that it didn't pose a significant risk. Results of the RI indicated that direct exposure to volatile organic compounds (VOCs) from the soil or water 100 feet below ground was insignificant at this site. Chemicals of potential concern in the Newmark OU used in the risk assessment calculations included: PCE, TCE, cis 1,2dichloroethene (DCE), and six other VOCs detected in at least one well. EPA will continue to monitor the groundwater in the Newmark OU for any changes that would affect the risk analysis. The results of the risk assessment indicated that the current contaminant levels in the aquifer of the Newmark OU would not meet state or Federal drinking water standards if this water were to be delivered directly to local residents, without being treated. However, the levels are currently below the concentrations that would pose an unacceptable risk to human health, as defined by If the groundwater were used as a drinking water source without treatment, the chance of developing cancer during a lifetime would increase by as much as 20 in a million. taking an action at the Newmark OU in order to meet the drinking water standards (MCLs) even though the risk levels do not exceed 100 in a million. The baseline risk assessment for the Newmark OU is presented in the Remedial Investigation and Feasibility Study Report for the Newmark OU (March 1993). #### Environmental Risk Assessment Given the present developed condition of the site and the major exposure pathway consideration of contaminated groundwater, there was no expectation for significant impact to potential environmental receptors. Urbanization has already replaced habitat potential; therefore, no significant number of receptors appeared There appeared to be no apparent mechanism for to be present. exposure to environmental receptors from contaminated groundwater. Also, there was no indication that future site plans would habitat and thereby recreate a potential reinstate environmental receptors in the future. ## 8.0 DESCRIPTION OF ALTERNATIVES ## Development of Alternatives to Meet Project Objectives Before developing a range of cleanup alternatives for evaluation, EPA identified the objectives of the interim cleanup for the Newmark OU. All of the alternatives were screened for: 1) effectiveness at protecting public health and the environment, 2) technical feasibility (implementability), and 3) cost. In addition, the alternatives were developed to meet the specific cleanup objectives for the Newmark OU described previously. ## Summary of Cleanup Alternatives Based on the results of the RI, EPA identified five cleanup alternatives for addressing groundwater contamination of the Newmark OU. Detailed descriptions of these alternatives are provided in the Newmark OU RI/FS Report (March 1993). Rather than including all potential combinations of extraction locations and amounts, the initial screening process identified the most efficient extraction scenario that would meet the stated objectives. The five alternatives were evaluated based on nine specific criteria: 1) Overall Protection of Human Health and the Environment, 2) Compliance with Applicable or Relevant and Appropriate Requirements (ARARs), 3) Long-term Effectiveness and Permanence, 4) Reduction of Toxicity, Mobility or Volume through Treatment, 5) Short-term Effectiveness, 6) Implementability, 7) Cost, 8) State Acceptance, and 9) Community Acceptance. With the exception of the Alternative 1 - No Action, all of the alternatives involve the extraction of 4,000 gallons per minute (gpm) of groundwater near the Newmark wellfield and 8,000 gpm of groundwater near the leading edge of the plume (approximately at 14th Street between Arrowhead and Waterman Avenues) for a period of 30 years. Individual wells would pump from 800 to 2,000 gpm, the range for a typical city drinking water well. A computer model was used to determine that these extraction rates would result in effective inhibition of plume migration and optimal contamination removal for this interim action. With the exception of Alternative 1 - No Action, all of the alternatives would involve the construction and operation of a VOC treatment system, construction and sampling of additional monitoring wells, and analysis of any changes in the current operations of nearby public water supply wells. During the first three years after the ROD is signed, the remedy would go through the remedial design and initial implementation stages. EPA must plan, build the equipment and test it to make sure it functions properly. ### ALTERNATIVE 1: No Action This alternative serves as a baseline to compare other alternatives. This alternative is evaluated to determine the risks that would be posed to public health and the environment if no action were taken to treat or contain the contamination. The No Action Alternative would involve only groundwater monitoring; no additional cleanup activities would be conducted. The cost of constructing the necessary monitoring wells and sampling them over 30 years would be approximately \$3.5 million (present net worth). 17 # ALTERNATIVE 2: Extract/Treat(Granular Activated Carbon)/Public Water System ## Extraction Alternative 2 involves the extraction of 8,000 gpm of contaminated groundwater placed at the leading edge of the Newmark plume and extraction of 4,000 gpm within the plume near the Newmark wellfield. The extraction wells would be located to inhibit most effectively the migration of the contaminant plume. ## **Treatment** The extracted groundwater would be transmitted via underground piping to Granular Activated Carbon (GAC) treatment plants (two separate treatment plants, one for each set of extraction wells). (Note that Alternative 3, involving treatment by air stripping, is considered by EPA to be equivalent to Alternative 2, and may be substituted for all or part of Alternative 2 during the design phase of the project.) ## Final Use of Treated Water The treated water would meet all legal requirements for drinking water and would be piped to the public supply system for distribution. Groundwater monitoring wells would be installed to evaluate the effectiveness of the remedial action. Following approximately 2 to 3 years for design and construction, this system would operate for 30 years. Operation of nearby public water supply wells is not expected to interfere with this remedy, although any significant changes in operations would be analyzed to determine the effect on this cleanup action. EPA will conduct a review of the project effectiveness every five years. # ALTERNATIVE 3: Extract/Treat(Air Stripping with Emission Control)/Public Water System Alternative 3 involves the same extraction system, final distribution and monitoring design as Alternative 2. Alternative 3 differs from Alternative 2 in the treatment of the extracted groundwater to remove VOCs to meet drinking water standards. In Alternative 3, the extracted contaminated water would be treated by air stripping with emission control to meet the South Coast Air Quality Management District's requirement for best available control technology. Currently, vapor-phase
granular activated carbon meets this requirement, and EPA used this technology for cost and effectiveness analysis. New emissions control technologies developed prior to the final design could be considered if they meet the air quality requirement. Air stripping is essentially equal to GAC (Alternative 2) in effectiveness, technical feasibility and the remaining criteria. # Alternative 4: Extract/Treat (Advanced Oxidation - Peroxide/Ozone) / Public Water System Alternative 4 involves the same extraction, end use and monitoring design as Alternative 2. The extracted water would be treated for VOCs using an advanced oxidation process that uses peroxide and ozone to destroy (oxidize) the contaminants (rather than transferring the contaminants to a carbon filter). The advanced oxidation process was the primary treatment method for this alternative. The treated water would meet all legal requirements for a drinking water supply and would be piped to a public distribution system. Groundwater monitoring wells would be installed to evaluate the effectiveness of the action. # ALTERNATIVE 5: Extract/Treat (GAC or Air Stripping)/Return to the Aquifer via Reinjection). Alternative 5 involves the same extraction, treatment and monitoring designs as Alternative 2 (including the option to use either GAC or air stripping to treat the extracted water for VOCs). The water would be returned to the aquifer in reinjection wells downgradient from the extraction wells. The treated water would meet drinking water standards before being returned to the aquifer. ## 9.0 SUMMARY OF COMPARATIVE ANALYSIS OF ALTERNATIVES A comparative analysis of the alternatives against the nine evaluation criteria is presented in this section. No Action versus the Nine Criteria. Clearly, Alternative 1 would not be effective in the short- and long-term in protecting human health and the environment as it does not provide for removing any contaminants from the aquifer, for inhibiting further downgradient contaminant plume migration, or for reducing the toxicity, mobility and volume of contaminants through treatment. Implementing the no-action alternative would be simple and inexpensive since it involves only groundwater monitoring. As indicated by the baseline risk assessment presented in the RI Report, Alternative 1 could pose both carcinogenic and non-carcinogenic risk if a person were exposed to the groundwater from the upper zone of the aquifer, although these risks are below the 100 in a million excess risk level (10⁻⁴) which EPA considers generally unacceptable. current contaminant level would not meet state or federal drinking water standards if this water were to be delivered directly to local residents without treatment. Loss of a valuable water resource from continued degradation of the aquifer is a major concern for the State and the public. Overall Protection of Human Health and the Environment, Short Term Effectiveness and Long Term Effectiveness. Alternatives 2, 3, 4 and 5 have the same effectiveness in the short and long term in reducing the risk to human health and the environment by removing contaminants from the aquifer; by inhibiting further downgradient contaminant migration; and by reducing the toxicity, mobility and volume of contaminants in the aquifer. Reduction of Toxicity, Mobility and Volume through Treatment. VOC treatment technologies used in Alternatives 2, 3 and 5 (either stripping with emission control (e.g., vapor-phase GAC ption) or liquid phase GAC adsorption) are technically adsorption) or liquid phase GAC adsorption) feasible and effective in meeting ARARs for VOCs in the extracted and treated groundwater. Treatment of the extracted contaminated groundwater via air stripping with vapor-phase GAC adsorption or liquid phase GAC adsorption would reduce substantially the toxicity and mobility of contaminants in the aqueous phase. The adsorption contaminants onto the GAC would reduce the volume However, a substantially larger quantity of contaminated media. contaminated GAC media would be generated with either air stripping with vapor-phase GAC or liquid-phase GAC systems compared to perozone oxidation (which is a destructive technology) followed by either air stripping with vapor-phase GAC adsorption or liquidphase GAC. This contaminated GAC would require disposal or During the design phase, an alternative emission regeneration. control technology will be tested to eliminate the need for vaporphase GAC while meeting the Best Available Control Technology requirement. Treatment of the extracted contaminated groundwater via perozone oxidation in Alternative 4 would destroy greater than 90 percent of the VOCs, and generate a smaller quantity contaminated GAC media compared to the conventional technologies alone. VOC treatment using perozone oxidation has only been tested and applied in pilot-scale/limited applications, and limited O&M data are available. Concern has been expressed over the innovative technology at reliability of this large-scale application for drinking water supply treatment. Incomplete oxidation can lead to the formation of by-products such as formaldehyde which would also need to addressed. Coupled with the uncertainties associated with design, capital and operational costs and day-to-day reliability at a large scale, and finally the fact that a municipality will be receiving this water, all combine to make Alternative 4 less preferable than Alternatives 2, 3 and 5 which propose using liquid phase GAC or air stripping for VOC treatment. As a result of comments received during the public comment period, EPA further evaluated the use of an advanced oxidation system as pretreatment for liquid-phase GAC. Additional research on perozone use and revised cost estimates based on a bench scale treatability study can be found in the following technical memorandum: Analysis of "Hybrid" Advanced Oxidation Pretreatment/Activated Carbon Alternative for the Newmark Operable Unit (June 25, 1993) included in the Administrative Record for the Newmark OU. Pretreatment with a destructive technology has the theoretical advantage of reducing contaminant mass while enhancing the operation of a reliable conventional technology. EPA may use this modification of liquid phase GAC if this modification proves to be effective and economical during design phase testing and analysis. Compliance with ARARS. As discussed in the ARARS section (Section 10) of this ROD, since this remedial action is an interim action, there are no chemical-specific ARARS for aquifer cleanup for any of the alternatives. For Alternatives 2 through 5, the chemical-specific ARARS for the treated water from the VOC treatment plant at this site are Federal MCLs and more stringent State MCLs for VOCs. Alternatives 2, 3, and 5 are expected to meet these ARARS for the treated water. There is some uncertainty regarding the ability of Alternative 4 to meet these ARARS because perozone has not been used to treat such high concentrations of VOCs at such high flow rates. Therefore, there is the potential for not meeting MCLs unless the air stripping or liquid-phase GAC unit following the perozone system is a redundant treatment system (which would add substantially to the cost). For the Alternatives that involve distribution of the treated water to a public water supply system (Alternatives 2, 3 and 4), secondary drinking water standards are ARARs. For water that will be served at the tap, all legal requirements will have to be met. In Alternative 5, the treated water will meet MCLs for VOCs prior to return to the aquifer at an on-site location. Implementability. Technically and administratively, Alternatives 2, 3, and 5 could be implemented. The technologies considered for groundwater monitoring, extraction, and conveyance are proven and have been applied extensively. For Alternative 5, the availability of an appropriate on-site location for reinjection of extracted and treated groundwater would need to be addressed. state and Public Acceptance. Based on comments received during the public comment period, the public generally expressed support for Alternatives 2 through 5, although strong reservations were expressed about alternative 4. EPA received comments from the City of San Bernardino Water Department, two other water agencies in the area, and members of the San Bernardino community specifically in support of Alternatives 2 and 3. Comments received during the public comment period along with EPA responses are presented in Part III of this ROD, the Responsiveness Summary. In a letter dated July 29, 1993, the State (Cal-EPA) concurred with EPA's selected remedy for the Newmark OU. Cost. The estimated total present worth of Alternatives 2, 3 and 5 ranges from \$47,900,000 to \$49,900,000. The total present worth cost for Alternative 4 is \$61,000,000. For alternatives 2, 3 and 4, some of these costs are expected to be offset by the water supply agencies which accept the treated water. These overall project costs do not take into account the value of utilizing the ; groundwater resource directly as opposed to recharging the water to the aquifer to be eventually pumped to the surface again prior to use (Alternative 5). ## 10.0 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS This section discusses Applicable or Relevant and Appropriate requirements (ARARs) for the Newmark OU. Under Section 121(d)(1) of the Comprehensive Environmental Response, Compensation and Liability Act of 1980 as amended by the Superfund Amendments and Reauthorization Act of 1986 (collectively, CERCLA), 42 U.S.C. § 9621(d) remedial actions must attain a level or standard of control of hazardous substances which complies with ARARs of Federal environmental laws and more stringent state environmental and facility siting laws. Only state requirements that are more stringent than Federal ARARs, and are legally enforceable and consistently enforced may be ARARs. Pursuant to Section 121(d) of CERCLA, the
on-site portion of a remedial action selected for a Superfund site must comply with all ARARs. Any portion of a remedial action which takes place off-site must comply with all laws legally applicable at the time of the off-site activity occurs, both administrative and substantive. An ARAR may be either "applicable", or "relevant and appropriate", but not both. According to the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (40 CFR Part 300), "applicable" and "relevant and appropriate" are defined as follows: - Applicable requirements are those cleanup standards, standards of control, or other substantive environmental protection requirements, criteria, or limitations promulgated under Federal or state environmental or facility siting laws that specifically address a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstance found at a CERCLA site. Only those state standards that are identified by a state in a timely manner and that are more stringent than Federal requirements may be applicable. "Applicability" implies that the remedial action or the circumstances at the site satisfy all of the jurisdictional prerequisites of a requirement. - Relevant and appropriate requirements are those cleanup standards, standard of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under Federal environmental or State environmental or facility siting laws that, while not "applicable" to a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstance at a CERCLA site, address problems or situations sufficiently similar to those encountered at the CERCLA site that their use is well suited to the particular site. Only those state standards that are identified in a timely manner and that are more stringent than Federal requirements may be relevant and appropriate. risk-based concentration limits, numerical values, or methodologies for various environmental media (i.e., groundwater, surface water, air, and soil) that are established for a specific chemical that may be present in a specific media at the site, or that may be discharged to the site during remedial activities. These ARARs set limits on concentrations of specific hazardous substances, pollutants, and contaminants in the environment. Examples of this type of ARAR are ambient water quality criteria and drinking water standards. Location-Specific ARARS. Location-specific requirements set restrictions on certain types of activities based on site characteristics. Federal and state location-specific ARARS are restrictions placed on the concentration of a contaminant or the activities to be conducted because they are in a specific location. Examples of special locations possibly requiring ARARS may include flood plains, wetlands, historic places, and sensitive ecosystems or habitats. Action-Specific ARARS. Action-specific requirements are technology- or activity-based requirements which are triggered by the type of remedial activities under consideration. Examples are Resource, Conservation and Recovery Act (RCRA) regulations for waste treatment, storage or disposal. Neither CERCLA nor the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (400 C.F.R. Part 300) provides across-the-board standards for determining whether a particular remedy will result in an adequate cleanup at a particular site. Rather, the process recognizes that each site will have unique characteristics that must be evaluated and compared to those requirements that apply under the given circumstances. Therefore, ARARs are identified on a site-specific basis from information about specific chemicals at the site, specific features of the site location, and actions that are being considered as remedies. The following section outlines the Applicable or Relevant and Appropriate Requirements (ARARs) that apply to this site. ## 10.1 Chemical-Specific ARARs ## 10.1.1 Federal Drinking Water Standards Section 1412 of the Safe Drinking Water Act (SDWA), 42 U.S.C. S300g-1, "National Water Regulations"; National Primary Drinking Water Regulations, 40 CFR Part 141. EPA has established Maximum Contaminant Levels (MCLs) (40 CFR Part 141) under the Safe Drinking Water Act (SDWA) to protect public health from contaminants that may be found in drinking water sources. These requirements are applicable at the tap for water provided directly to 25 or more people or which will be supplied to 15 or more service connections. The MCLs are applicable to any water that would be served as drinking water. Under NCP Section 300.430(f)(5), remedial actions must generally attain MCLs and non-zero Maximum Contaminant Level Goals (MCLGs) for remedial actions where the groundwater is currently or potentially a source of drinking water. The groundwater at the Newmark OU is a potential source of drinking water. However, since the Newmark OU remedial action is an interim action, chemical-specific cleanup requirements for the aquifer such as attaining MCLs and non-zero MCLGs, which would be ARARs for a final remedy, are not ARARs for this interim action. (See NCP, 55 Fed. Reg. 8755.) Nevertheless, EPA has determined that for the treatment plant effluent from the Newmark OU, the Federal Maximum Contaminant Levels (MCLs) for VOCs and any more stringent State of California MCLs for VOCs are relevant and appropriate and must be attained regardless of the end use or discharge method for the treated water. For the treated water which will be put into the public water supply, all legal requirements for drinking water in existence at the time that the water is served will have to be met because EPA considers serving of the water to the public (at the tap) to be off-site. Since these are not ARARs, these requirements are not "frozen" as of the date of the ROD. Rather, they can change over time as new laws and regulations applicable to drinking water change. See NCP, 55 Fed. Reg. 8758 (March 8, 1990). ## 10.1.2 State Drinking Water Standards California Safe Drinking Water Act, Health and Safety Code, Division 5, Part 1, Chapter 7, \$4010 et seq., California Domestic Water Quality Monitoring regulations, CCR Title 22, Division 4, Chapter 15, \$64401 et seq. California has also established drinking water standards for sources of public drinking water, under the California Safe Drinking Water Act of 1976, Health and Safety Code Sections 4010.1(b) and 4026(c). California has promulgated MCLs for primary Several of the State MCLs are more stringent than Federal VOCs. In these cases, EPA has determined that the more stringent State MCLs for VOCs are relevant and appropriate for the treatment plant effluent from the Newmark OU interim remedy. The VOCs for which there are more stringent State standards include: benzene; tetrachloride; 1,2-dichloroethane (1,2-DCA); dichloroethene (1,1-DCE); cis-1,2-DCE; trans-1,2-DCE; and xylene. There are also some chemicals where State MCLs exist but there are no Federal MCLs. EPA has determined that these State MCLs are relevant and appropriate for the treated water prior to discharge or delivery to the water purveyor. The VOCs for which there are no Federal MCLs but for which State MCLs exist include: 1,1-DCA; 1,1,2,2-tetrachloroethane; and 1,1,2-trichloroethane. Water served as drinking water is required to meet MCLs at the tap, not MCLGs. Therefore, EPA would generally not expect a future change in an MCLG to affect the use of treated groundwater as a drinking water source. The cumulative hazard index is also not an ARAR. However, EPA does retain the authority to require changes in the remedy if necessary to protect human health and the environment, including changes to previously selected ARARS. See 40 C.F.R. Sections 300.430(f)(1)(ii)(B)(1) and 300.430(f)(5)(iii)(C). If EPA receives new information indicating the remedy is not protective of public health and the environment, EPA would review the remedy and make any changes necessary to ensure protectiveness. EPA has also determined that the monitoring requirements found in CCR Title 22 Sections 64421-64445.2 are relevant and appropriate for any treated water which will be delivered to a public water distribution system. However, the selection of these sections as ARARs involves only the requirements that specific monitoring be performed. It would not include any administrative requirements (such as reporting requirements) and would also not include meeting substantive standards set within these sections since no such standards have been identified by the State as being more stringent than Federal requirements. For the off-site portion of this remedy, including serving of the treated water, all applicable requirements would have to be satisfied including the monitoring requirements in CCR Title 22 Sections 64421-64445.2. Accordingly, the chemical-specific standards for the groundwater extracted and treated under the Newmark OU interim remedy are the current Federal or State MCLs for VOCs, whichever is more stringent. ## 10.2 Location-Specific ARARS No special characteristics exist in the Newmark OU to warrant location-specific requirements. Therefore, EPA has determined that there are no location-specific ARARs for the Newmark OU. ## 10.3 Action-Specific ARARS ## 10.3.1 Clean Air Act, 42 U.S.C. \$7401 et seq. Rules and Regulations of the South Coast Air Quality Management District The Newmark OU alternative treatment of VOCs by air stripping, whereby the volatiles are emitted to the atmosphere, triggers action—specific ARARs with respect to air quality. The Clean Air Act regulates air emissions to protect human health and the environment, and is the enabling statute for air quality programs and standards. The substantive requirements of programs provided under the Clean Air Act are implemented primarily through Air Pollution Control Districts. The South Coast Air Quality Management District (SCAQMD) is
the district regulating air quality in the San Bernardino area. The SCAQMD has adopted rules that limit air emissions of identified toxics and contaminants. The SCAQMD Regulation XIV, comprising Rules 1401, on new source review of carcinogenic air contaminants is applicable for the Newmark OU. SCAQMD Rule 1401 also requires that best available control technology (T-BACT) be employed for new stationary operating equipment, so the cumulative carcinogenic impact from air toxics does not exceed the maximum individual cancer risk limit of ten in one million (1×10^{-5}) . EPA has determined that this T-BACT rule is applicable for the Newmark OU because compounds such as PCE and TCE are present in groundwater, and release of these compounds to the atmosphere may pose health risks exceeding SCAQMD requirements. The substantive portions of SCAQMD Regulation XIII, comprising Rules 1301 through 1313, on new source review are also ARARs for the Newmark OU. The SCAQMD also has rules to limit the visible emissions from a point source (Rule 401), which prohibits discharge of material that is odorous or causes injury, nuisance or annoyance to the public (Rule 402), and limits down-wind particulate concentrations (Rule 403). EPA has determined that these rules are also ARARs for the Newmark OU interim remedy. #### Water Quality Standards for Reinjection and Discharges of 10.3.2 Treated Water to Surface Waters or Land ### Federal Standards The Safe Drinking Water Act provides Federal authority over injection wells. The Federal Underground Injection Control Plan is codified in Part 144 of 40 C.F.R and prohibits injection wells such as those that would be located at the Site from (1) causing a violation of primary MCLs in the receiving waters and (2) adversely affecting the health of persons. 40 C.F.R. §144.12. 144.13 of the Federal Underground Injection Control Plan provides that contaminated ground water that has been treated may be reinjected into the formation from which it is withdrawn if such injection is conducted pursuant to a CERCLA cleanup and is approved 40 C.F.R. \$144.13. These regulations are applicable to any Newmark OU treated water that is reinjected into the aquifer. The Resource Conservation and Recovery Act (RCRA) Section 3020 is also an action-specific ARAR. This section of RCRA provides that the ban on the disposal of hazardous waste into a formation which contains an underground source of drinking water (set forth in Section 3020(a)) shall not apply to the injection of contaminated groundwater into the aquifer if: (i) such injection is part of a response action under CERCLA; (ii) such contaminated to substantially reduce groundwater is treated constituents prior to such injection; and (iii) such response action will, upon completion, be sufficient to protect human health and the environment. RCRA Section 3020(b). ## State Standards ## Reinjection to Groundwater For any reinjection to the basin, including spreading, or discharges to surface water or land that occur on-site, the reinjected or discharged water must meet all action-specific ARARs for such reinjection or discharge. The ARAR applicable to the reinjected water (Alternative 5) is: The Santa Ana Regional Water Quality Control Board's Water Quality Control Plan for the Santa Ana River (and specific Bunker Hill Sub-basins), which incorporates State Water Resources Control Board Resolution No. 68-16, "Statement of Policy with Respect to Maintaining High Quality of Waters in California." Resolution No. 68-16 requires maintenance of existing State water quality unless it is demonstrated that a change will benefit the people of California, will not unreasonably affect present or potential uses, and will not result in water quality less than that prescribed by other State policies. ## Temporary Discharges to Surface Water EPA anticipates that there may be short-term discharges of treated water to the flood control channel or storm drains during the initial operation of the VOC treatment plant and on certain other limited occasions. The ARAR for any treated water that is discharged, on a short term basis, to surface waters is the National Pollutant Discharge Elimination System (NPDES) Program which is implemented by the SARWQCB. In establishing effluent limitations for such discharges, the SARWQCB considers the Water Quality Control Plan for the Santa Ana River Basin, Bunker Hill Sub-basins (the "Basin Plan"), which incorporates Resolution 68-16, the Inland Surface Water Plan and Temperature Plan for Surface Waters, and the best available technology economically achievable (BAT). See, Cal. Water Code § 13263. Since the RWQCB did not identify specific substantive discharge requirements or technology standards for such temporary discharges, EPA has reviewed the Basin Plan (with related documents) and considered BAT and has made certain determinations for the short-term discharges to surface waters. In order to comply with this ARAR, any groundwater that will be discharged, on a short-term basis, to surface waters on-site must be treated to meet Federal MCLs or State MCLs for VOCs, whichever is more stringent. # 10.3.3 Secondary Drinking Water Quality Standards The State of California's Secondary Drinking Water Standards (SDWS) which are more stringent than the Federal Secondary Drinking Water Standards shall be ARARs for the Newmark OU if the final use option involves serving treated groundwater as drinking water. 22 CCR §64471. The California SDWS are selected as ARARs because they are promulgated State standards and are relevant and appropriate to the action of supplying the treated water to a public water supplier. Although California SDWS are not applicable to non-public water system suppliers, the California SDWS are relevant and appropriate since the treated water under this action would be put into the public drinking water system. Since the Federal SWDS are not enforceable limits and are intended as guidelines only, they are not ARARs for this action. Furthermore, since the State SDWS are more stringent than the Federal SDWS, EPA has not selected the Federal SDWS as requirements for this action. In summary, if the treated water is to be served as drinking water, the treated water at the point of delivery must meet the California SDWS. If the treated water is recharged or (temporarily) discharged to the flood control channel, the water will not be required to meet State SDWS. The Safe Drinking Water Act provides Federal authority over injection wells. The Federal Underground Injection Control Plan is codified in Part 144 of 40 C.F.R and prohibits injection wells such as those that would be located at the Site from (1) causing a violation of primary MCLs in the receiving waters and (2) adversely affecting the health of persons. 40 C.F.R. \$144.12. Section 144.13 of the Federal Underground Injection Control Plan provides that contaminated ground water that has been treated may be reinjected into the formation from which it is withdrawn if such injection is conducted pursuant to a CERCLA cleanup and is approved by EPA. 40 C.F.R. \$144.13. These regulations are applicable to any Newmark OU treated water that is reinjected into the groundwater on the Newmark site. # 10.3.4 Resource Conservation and Recovery Act (RCRA) and Hazardous Solid Waste Amendment (HSWA) Standards, 42 U.S.C. \$\$6901-6987. RCRA, passed by Congress in 1976 and amended by the Hazardous and Solid Waste Amendments of 1984, contains several provisions that are ARARs for the Newmark OU. The State of California has been authorized to enforce its own hazardous waste regulations (California Hazardous Waste Control Act) in lieu of the Federal RCRA Program administered by the EPA. Therefore, State regulations in the California Code of Regulations (CCR), Title 22, Division 4.5, Environmental Health Standards for the management of Hazardous Wastes (hereinafter the State HWCA Regulations), are now cited as ARARs instead of the Federal RCRA Regulations. Since the source of the contaminants in the groundwater is unclear, the contaminated groundwater is not a listed RCRA waste. However, the contaminants are sufficiently similar to RCRA wastes that EPA has determined that portions of the State's HWCA Regulations are relevant and appropriate. Specifically, the substantive requirements of the following general hazardous waste facility standards are relevant and appropriate to the VOC treatment plant for Alternatives 2 through 5: Section 66264.14 (security requirements), Section 66264.15 (location standards) and Section 66264.25 (precipitation standards). In addition, an air stripper or GAC contactor would qualify as a RCRA miscellaneous unit if the contaminated water constitutes RCRA hazardous waste. EPA has determined that the substantive requirements for miscellaneous units set forth in Sections 66264.601 -.603 and related substantive closure requirements set forth in 66264.111-.115 are relevant and appropriate for the air stripper or GAC contactor. The miscellaneous unit and related closure requirements are relevant and appropriate because the water is similar to RCRA hazardous waste, the air stripper or GAC contactor appear to qualify as a miscellaneous unit, and the air stripper or GAC contactor should be designed, operated, maintained and closed in a manner that will ensure the protection of human health or the environment. The land disposal restrictions (LDR), 22 CCR Section 66268 are relevant and appropriate to discharges of contaminated or treated groundwater to land. The remedial alternatives presented do not include land disposal of untreated groundwater. Because of the uncertainty in the levels of contamination and volumes of water to be derived from monitoring and extraction wells at this site, these waters must be treated to meet Federal and State MCLs for VOCs, whichever is more stringent, prior to discharge to land. By meeting the Federal and State MCLs for VOCs before
reinjection, Alternative 5 will satisfy the RCRA LDRs. The container storage requirements in 22 CCR Sections 66264.170 -.178 are relevant and appropriate for the storage of contaminated groundwater over 90 days. On-site storage or disposal of the spent carbon from the treatment system could trigger the State HWCA requirements for storage and disposal if the spent carbon contains sufficient quantities of hazardous constituents that cause the spent carbon to be classified as a characteristic hazardous waste. If the spent carbon is determined to be a hazardous waste under HWCA (Sections 66261 and 66262), the requirements for handling such waste set forth in Sections 66262 and 66268 are applicable. Certain other portions of the State's HWCA's regulations are considered to be relevant but not appropriate to the VOC treatment plant. EPA has determined that the substantive requirements of (general inspection requirements), Section 66264.15 66264.15 (personnel training) and Sections 66264.30-66264.56 (Preparedness and Prevention and Contingency Plan and Emergency Procedures) are relevant but not appropriate requirements for this EPA has made this determination because the treatment system. treatment plant will be required to have health and safety plans operation and maintenance plans under CERCLA that are substantively equivalent to the requirements of Sections 66264.15, 66264.30-66264.56. ## 10.3.5 California Water Well Standards. Substantive standards for construction of public water supply wells have been published by the State as the California Water Well Standards. While these standards have not been specifically promulgated as an enforceable regulation and are therefore not ARARs, all groundwater facilities designed, located and constructed to produce drinking water must be constructed in accordance with these standards. Since the remedy involves delivery of the treated water to the public supply system, EPA has determined that the action will comply with substantive Water Well Standards for construction of water supply wells, such as sealing the upper annular space to prevent surface contaminants from entering the water supply. Standards for location of the extraction wells are not appropriate, since the effectiveness of the remedy is dependent upon the well locations. Additionally, wells constructed solely for treatment and reinjection with no delivery to the public supply system would not be subject to these water well construction standards. ## 10.4 Summary of ARARs for the Newmark OU Interim Remedy EPA has determined a number of chemical-, and action-specific ARARs for the Newmark OU interim remedy. All of the alternatives that involve groundwater extraction and treatment could achieve the chemical-specific treatment standards for the groundwater at the point of delivery. However, Alternative 4 which uses an advanced oxidation process is a less certain technology than liquid-phase GAC adsorption or air stripping for such a large volume of water and therefore is somewhat less likely to achieve the chemical-specific ARARs. Requirements of nonenvironmental laws, such as California OSHA regulations (8 CCR 5192) are not considered as ARARs and all such requirements applicable at the time of the activity would have to be satisfied. ## 11.0 THE SELECTED REMEDY Based upon consideration of the requirements of CERCLA, the detailed analysis of the alternatives, and public comments, EPA has determined that Alternative 2: Extraction, Treatment of VOCs by liquid phase GAC (or air stripping with Best Available Control Technology for emissions), and Conveyance to a public water distribution system, in combination with Alternative 5 (as a contingency): Extraction, Treatment of VOCs, and Recharge to the aquifer, is the most appropriate interim remedy for the Newmark OU. Alternative 2 involves groundwater extraction (pumping) of 8,000 gallons per minute (gpm) in the vicinity of 14th Street, between Arrowhead and Waterman Avenues, at the leading edge of the contaminant plume, and an additional 4,000 gpm at the Newmark wellfield (near 48th Street and Little Mountain Drive) where the contamination enters the eastern part of the valley. Various locations and scenarios for extraction wells and rates extraction are proposed in the FS report for the Newmark OU; however, all design decisions for this interim remedy will be made during the remedial design phase. During the remedial design phase the locations proposed for extraction wells and scenarios for rates of extraction per individual well may be selected or new ones may be selected. The exact number, location and other design specifics of new extraction wells will be determined during the remedial design phase of the project to inhibit the migration of the contaminant plume most effectively. Wherever appropriate, existing water production wells will be utilized for the remedy, and new wells will be constructed as necessary, as discussed in the Newmark OU FS Report. All the extracted contaminated groundwater shall be treated to remove VOCs by either of two proven treatment technologies: granular activated carbon (GAC) filtration or air stripping. determined during the Feasibility Study (March 1993) that these treatment technologies are equally effective at removing VOCs and are similar in cost at this OU. Both technologies have been proven to be reliable in similar applications. It is acceptable to use one technology for the northern (Newmark wellfield) facility and the other at the southern treatment facility. Existing treatment facilities (e.g., the air stripping towers at the Newmark wellfield) may be modified and incorporated into the remedy as appropriate. As a result of comments received during the public comment period, EPA may use a modification of liquid phase GAC (Advanced Oxidation pretreatment) if this modification proves to be effective and economical during design phase testing and analysis. The VOC treatment technology which best meets the objectives of the remedy for the Newmark OU will be determined during the remedial design phase, when more detailed information is available to assess effectiveness and cost. The treated water exiting the treatment plant shall meet all MCLs and secondary drinking water standards. If air stripping treatment is selected, air emissions shall be treated using the best available control technology (e.g., vapor phase GAC or an acceptable innovative technology) to ensure that all air emissions meet ARARs. The treated water will be piped to the public water supply system for distribution. Groundwater monitoring wells will be installed and sampled regularly to help evaluate the effectiveness of the remedy. More specifically, groundwater monitoring will be conducted no less frequently than quarterly to obtain information needed to: 1) evaluate influent and effluent water quality, 2) determine and evaluate the capture zone of the extraction wells, 3) evaluate the vertical and lateral (including downgradient) migration of contaminants, 4) (if the contingency alternative is implemented) to evaluate the effectiveness of the recharge well system and its impact on the remedy and 5) to monitor any other factors associated with the effectiveness of the interim remedy determined to be necessary during remedial design. frequency may be decreased to less than quarterly if EPA determines that conditions warrant such a decrease. EPA has selected Alternative 5 as a contingency if the public water supply system does not accept any or all of the treated water (possibly due to water supply needs). Any remaining portion of water will be recharged into the aquifer via reinjection wells near the edge of the plume. The number, location and design of the reinjection wells will be determined during the remedial design phase to best meet the objectives of the remedy and meet applicable or relevant and appropriate requirements. With the exception of the need to meet secondary MCLs and final use of the treated water, Alternative 5 is identical to Alternative 2 above. The total duration of the Newmark OU interim remedy will be 33 years, with the first three years for design and construction. EPA will review this action every five years throughout this interim remedy period and again at the conclusion of this period. The VOC treatment plant of the Newmark OU interim remedy (whether it be Alternative 2, Alternative 5 or a combination thereof) shall be designed and operated so as to prevent the unknowing entry, and minimize the possible effect of unauthorized entry, of persons or livestock into the active portion of the facility. A perimeter fence shall be erected around the VOC treatment plant if an adequate fence or other existing security system is not already in place at the plant site. This fence should be in place prior to initiation of the remedial action and should remain in place throughout the duration of the remedy. The VOC treatment plant shall also be designed and operated so as to prevent releases of contaminated groundwater from the plant. The selected remedy for the Newmark OU meets all of EPA's nine evaluation criteria. The selected remedy is equally effective as the other alternatives in the short-term and long term reduction of risk to human health and the environment by removing contaminants from the aquifer, by inhibiting further downgradient migration of the contaminant plume, and by reducing the toxicity, mobility and volume of contaminants in the aquifer. The VOC treatment technologies selected (liquid phase GAC or air stripping with best available control technology for emissions) are technically feasible and proven effective at meeting ARARs for VOCs in the treated groundwater. Alternative 2, in combination with Alternative 5, could be implemented, both technically and administratively. In a letter dated July 29, 1993, the State concurred with EPA's selected remedy. EPA received several public comments during the public comment period, the
majority of which expressed support for EPA's preferred alternative. These comments, along with EPA's responses are presented in Part III of this ROD, the Responsiveness Summary. The selected remedy is protective of human health and the environment, meets ARARs, and provides beneficial uses (distribution to a public water supply and/or recharge) for the treated water. The selected remedy is cost-effective. The estimated cost of Alternative 2 has a total present worth of \$49,900,000, which is in the middle of the range for all five alternatives. The estimated total cost of Alternative 5 is \$48,100,000. ## 12.0 STATUTORY DETERMINATIONS As required under Section 121 of CERCLA, the selected interim remedial action is protective of human health and the environment, complies with Federal and State requirements that are legally applicable or relevant and appropriate to the interim remedial action, and is cost effective. The selected remedy utilizes permanent solutions and alternative treatment technologies to the maximum extent practicable and satisfies the statutory preference for remedies that employ treatment to reduce toxicity, mobility, and volume as a principal element. The selected interim remedial action is protective of human health and the environment in that it removes significant VOC contaminant mass from the upper zones of the aquifer and inhibiting further downgradient and vertical migration of contaminated groundwater. The VOC treatment technologies selected (liquid phase GAC or air stripping with best available control technology for emissions) are technically feasible and proven effective at meeting ARARs for VOCs in the treated groundwater and the air. The selected remedy permanently and significantly reduces the toxicity, mobility and volume of hazardous substances in the aquifer as well as the extracted groundwater. Because this remedy will result in hazardous substances remaining on-site above health-based levels, EPA shall conduct a review, pursuant to CERCLA Section 121, 42 U.S.C. Section 9621, at least once every five years after commencement of remedial action to ensure that the remedy continues to provide adequate protection of human health and the environment. ## 13.0 DOCUMENTATION OF SIGNIFICANT CHANGES The only significant change to the Newmark OU interim remedy proposed in the Proposed Plan fact sheet dated March, 1993, involves the possible use of a modification to the liquid phase GAC treatment technology. As a result of comments received during the public comment period, EPA further evaluated the use of an advanced oxidation system as pretreatment for liquid-phase GAC. Additional research on system effectiveness and revised cost estimates based vendor reports can be found in the following technical memorandum: Analysis of "Hybrid" Advanced Oxidation Pretreatment / Activated Carbon Alternative for the Newmark Operable Unit (June 25, 1993) included in the Administrative Record for the Newmark OU. Pretreatment with a destructive technology has the theoretical advantage of reducing contaminant mass while enhancing the operation of a reliable conventional technology. EPA may use this modification of liquid phase GAC if this modification proves to be effective and economical during design phase testing and analysis. The impact of this potential change is that the reliability of the conventional liquid phase GAC technology is retained and some desirable destruction of contaminants is realized. Since this option would only be a modification of the conventional technology, the advanced oxidation system would not need to be designed to achieve full treatment of the VOCs, reducing the cost of the innovative component of the treatment. The cost of operation of the liquid phase GAC would also be reduced, offsetting a portion of the increased capital costs. ### PART III. RESPONSIVENESS SUMMARY For Public Comments received during the Public Comment Period for the Newmark Operable Unit Interim Remedy at the Newmark Groundwater Contamination Superfund Site San Bernardino, California # **EXECUTIVE SUMMARY** This Responsiveness Summary addresses comments received from the public, State agencies, and local agencies on EPA's proposed interim cleanup plan for the Newmark OU. Comments from the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) on the RI/FS report and the draft Proposed Plan for the Newmark OU were received by EPA prior to issuing the Proposed Plan and initiating the public comment period. DTSC's comments and EPA's responses are available for review in the Administrative Record for the Newmark OU and are not included in this responsiveness summary. EPA held a 45-day public comment period on the RI and FS reports, Proposed Plan and other Newmark OU administrative record documents between March 22, 1993, and May 5, 1993. A public meeting was held in San Bernardino on April 14, 1993. Approximately 25 representatives of the community, local agencies, and EPA attended the meeting and the meeting was broadcast live on a local cable channel. EPA staff made a presentation on the Newmark OU alternatives, including EPA's preferred alternative, and answered questions. A transcript of the meeting is included in the Administrative Record for the Newmark OU. EPA received questions and comments orally from six members of the public during the April 14, 1993, public meeting. EPA also received seven letters containing comments from interested community members, the San Bernardino Water Department, the City of Rialto Utilities Department, the East Valley Water District, and the California Department of Health Services, Environmental Health. These letters are included in the Newmark OU Administrative Record. All but one of the commenters were generally supportive of most aspects of Preferred Alternative presented in the proposed plan. A number of comments expressed strong approval of the preferred alternative. A committee of water supply agencies expressed a willingness to cooperate in the remedy (specifically the acceptance of treated water by the public supply system), with issues to be resolved during subsequent design phase. Although there was general agreement that the reliability of conventional treatment technologies was desirable, many commenters were concerned about disposal of spent carbon. As a result of comments received during the public comment period, EPA has undertaken a study of a modification of GAC treatment which would oxidize a large proportion of the contaminants before the water enters the carbon system. EPA may use this enhanced liquid phase GAC (with Advanced Oxidation pretreatment) if this modification proves to be effective and economical during design phase testing and analysis. One commenter recommended that the proposed action at the Newmark OU be postponed until further investigation could support justification of the project. RESPONSIVENESS SUMMARY for PUBLIC COMMENTS RECEIVED from March 22 through May 5, 1993 ON THE PROPOSED PLAN FOR THE NEWMARK OPERABLE UNIT INTERIM REMEDIAL ACTION AT THE NEWMARK GROUNDWATER CONTAMINATION SUPERFUND SITE, SAN BERNARDINO, CALIFORNIA This document summarizes and responds to all significant comments received during the public comment period (45 days) on EPA's Proposed Plan for the Newmark Operable Unit (OU) of the Newmark Groundwater Contamination Superfund Site in San Bernardino, This summary is divided into two parts. provides a summary of the major issues raised in written comments contained in seven letters received by EPA during the comment period. Part II summarizes the questions and comments made during the public meeting on the Proposed Plan held in San Bernardino on April 14, 1993. Since the distinction between questions and formal comments was not made completely clear at the public meeting, all questions and comments will be included in this responsiveness summary. Most of the questions received at the public meeting were addressed during the meeting, and a brief synopsis of EPA's response with any needed clarification is presented in this Responsiveness Summary. Copies of all the written comments received by EPA are included in the Newmark OU Administrative Record, available for review at the information repositories for the Newmark Superfund Site. The transcript of the public meeting, including all the questions, comments and responses made during the meeting, is also available at the information repositories. The comments from each source are grouped together and the commenter is identified at the start of the series of comments or questions. # RESPONSIVENESS SUMMARY - PART I #### WRITTEN COMMENTS 1) Commenters (San Bernardino Water Department and committee of nine interested water supply agencies) recommend further study of administrative and technical (facility) details for conveyance of treated water to public water supply agencies. EPA response: EPA agrees that these issues should be addressed in the design phase of this project. Cooperation from the water agencies in identification of critical technical and administrative areas is greatly appreciated. It should be noted that the EPA recognizes that this stage of the project is still preliminary and conceptual. EPA's analysis presented in the Feasibility Study and supported by a report prepared for the City of San Bernardino Water Department, concluded that conveyance of treated water from this project to public water supply agencies is a feasible alternative. However, since many important details remain, such as those expressed in this comment, a contingency for final use of the treated water is included in this decision. 2) Commenters recommend further study of costs associated with acceptance of water by public agencies. EPA response: This issue has not been formally addressed in the RI/FS. Negotiations during the remedial design phase with the agencies accepting the water will require more detailed information. The cost analyses in
the FS have not assumed that the agencies accepting the water would bear any of the pumping or treatment costs, to allow a consistent basis for comparison of the costs of the various alternatives. EPA intends that a Feasibility Study should be sufficiently detailed to allow for informed decision making and selection of a proposed plan. More detailed analyses of the selected remedy occur after the public comment period and during the Remedial Design phase. 3) Commenters recommend further study of water rights issues. EPA response: This issue will be addressed in the design phase. (Also see discussion in the ARARS section, Section 10, of this document.) Formal and informal discussions with water agencies have led EPA to conclude that the agencies which might accept the water are likely to have sufficient rights to the water. The final analysis of this issue depends on the results of negotiations to be held during the design phase. 4) Commenters recommend further study of water quality issues, particularly Total Dissolved Solids (TDS). EPA response: EPA has been collecting and will continue to collect data on the dissolved solids content of the groundwater near the proposed extraction locations. This information will be considered in negotiations with the agencies which might accept the treated water. We understand that excessive TDS may limit the ability of a number of these agencies to accept water from this project. 5) Commenters express willingness of San Bernardino Water Department to cooperate, pending study of impacts on the Department's distribution system. EPA response: EPA is grateful for the continued support and cooperation of the San Bernardino Water Department in this project. 6) Commenters express support of project from nine local water supply agencies. EPA response: The active participation of local water supply agencies in the Newmark RI/FS is gratefully acknowledged. Support of the proposed alternative by the community is an important criterion in selection of the remedy for this Operable Unit. 7) Commenter (East Valley Water District) supports project and intends to negotiate with EPA to accept water. EPA response: (See response to previous comment, # 6, above) 8) Commenter (City of Rialto Water Utilities) supports the project, preferring delivery to public supply agencies to recharge. EPA response: EPA is grateful for this expression of support. Recharge to the aquifer will only be considered as a contingency in the event that acceptance by water supply agencies cannot be negotiated. EPA expects that these negotiations will be successful. 9) Commenter (Eric Piehl, College Park Place Homeowners Assn.) expresses appreciation for EPA community involvement and useful information. EPA response: EPA gratefully acknowledges the patience and active involvement of the community during the RI/FS. The information provided during the project is intended to encourage this involvement, and this information is itself a response to the community's interests. 10) Commenter recommends more rapid action. EPA response: Reaction to a hazardous chemical release must balance a need for rapid response with careful data gathering and analyses. During this project, EPA has attempted to move the process along as quickly as possible and will continue to seek opportunities to streamline the process. 11) Commenter supports emission control at the Newmark facility. EPA response: If air stripping is the most efficient and economical treatment method at the Newmark facility, all emissions control regulations will be met. EPA has determined that regulations of the South Coast Air Quality Management District (see Section 10 of this document) will be complied with at this project. 12) Commenter recommends continuing efforts to identify the source of contamination. EPA response: In September of 1992, EPA initiated an RI/FS to address the source identification. Sample collection and analysis from the few existing wells in the area (called the Muscoy Operable Unit) has been completed recently. Additional observation wells will be necessary, and EPA expects to construct these in the next few months. Preliminary results of this investigation will be made public as soon as possible. 13) Commenter recommends EPA action on Muscoy Plume and other plumes in the area. EPA response: As discussed for Comment 12, EPA has already started to address the Muscoy Plume (the Muscoy OU of the Newmark Superfund project). Preliminary groundwater flow modelling is nearing completion for the Muscoy plume, and EPA will use much of the information gathered during the Newmark OU to accelerate the process for Muscoy. EPA does not have direct authority to respond to other releases of contaminants (outside the Superfund site) until that specific site is determined to be a National Priority (currently about 1200 sites nationwide), unless there is an imminent threat to human health or the environment. EPA can attempt to influence the action of state and local authorities by sharing technical information and by open discussion with officials and the community. Additionally, if the contamination from any source threatens the effectiveness of the remedy selected for a Superfund site, EPA has the authority to require an appropriate response. It appears that EPA's activities at the Newmark site has increased public awareness of other plumes in the basin. 14) Commenter supports alternative 2 (liquid phase GAC) for new treatment facilities and alternative 3 (air stripping) for the existing system at the Newmark wellfield. EPA response: Comments of support from the community are greatly appreciated. Both alternatives 2 and 3 have been selected as remedies for the Newmark OU. While it appears that a modification of the existing air stripping towers would be the most rapid and economical alternative at the Newmark wellfield, results of a treatability study for emissions control could make liquid phase GAC more attractive over the lifetime of the project. Conversely, extremely positive results of emission control technology tests could actually make air stripping preferable to GAC for the new facility. However, the current information would support the preferences of this commenter. 15) Commenter requests additional information on the health effects of PCE and TCE. EPA response: A summary of current knowledge of health effects has been received from ATSDR and is included in the record for this project. We apologize that this information was not readily available at the public meeting for the proposed plan. The information about the human health risks that was presented at the meeting is consistent with the summary from ATSDR. EPA does not expect that this additional information would alter community acceptance of the project. This information will be made available at the information repositories in San Bernardino (the County library at 104 West Fourth Street and the Municipal Water District office at 1350 South 'E' Street). 16) Commenter recommends study of current emissions at air stripping towers. EPA response: EPA will meet the standards for emission control established by the South Coast Air Quality Management District if air stripping is incorporated into the EPA action. The current air stripping units in the Newmark area are part of an action undertaken by the State of California in cooperation with local agencies. It is clear to EPA that emission controls will be installed at these units, although there have been delays due to design difficulties. EPA has been informed that the state is overseeing monitoring of emission levels in the area around the units. Consequently, EPA does not intend to conduct its own study of stripping tower emissions. The effectiveness of emission controls on any EPA stripping towers will be carefully monitored. 17) Commenter supports continued coordination with state and local agencies. EPA response: Advice and information from various state and local agencies have been quite valuable to this project. EPA intends to maintain this close coordination, including the continuation of the Technical Advisory Committee. 18) Commenter requests extension of comment period (for comments gathered at April 25th Environmental Fair). EPA response: The comment period was extended to May 5 as a result of requests from the community. 19) Commenter expresses concern over limited distribution of treated water due to water agency facilities and policies. EPA response: Protection of human health is EPA's overriding concern in this project. It has been determined that water which meets the established drinking water standards will be protective of human health. If local water supply agencies accept the treated water from this project, the point at which the water is conveyed to the water supply agencies (essentially at the end of the treatment system) will be considered "off-site". Off-site actions must meet all applicable regulations at the time of the activity. Your comment will be brought to the attention of the water supply agencies which negotiate to accept the water. 20) Commenter recommends consideration of direct use of imported water rather than recharge to a contaminated aquifer. EPA response: Unless water import and recharge actions threaten the effectiveness of the Superfund remedy, EPA has no direct authority over such activities. Recharge of imported water provides important storage capacity and reduces the need for expensive transmission pipelines. These critical advantages of a groundwater aquifer increases the importance of protection and cleanup of this contaminated aquifer. 21) Commenter (Gillem Lucas, Air and Water Technologies Corp.) notes that changing air quality regulations will impact emission control analysis of alternative 3. EPA response: Regulations that are determined to be Applicable or Relevant and Appropriate "freeze" at the time the ROD is signed. If EPA receives new information that the standards met by the remedy are not
protective of public health and the environment, EPA would review the remedy and make any changes necessary to ensure protectiveness. 22) Commenter recommends re-analysis of treatment design by another consultant (some innovative combinations have been overlooked). EPA response: As a result of comments from the public, EPA has analyzed a modification of the liquid phase GAC treatment alternative which would incorporate an innovative advanced oxidation pretreatment. This modification will receive additional study during the design phase. EPA actively seeks technical as well as non-technical input from the community during the public comment period and throughout the RI/FS process. EPA's ability to enter into contracts is restricted by Federal procurement regulations. The performance of the consultants used on all Superfund projects is regularly scrutinized. 23) Commenter (Diana Lee, California DHS, Environmental Health) recommends evaluation of hazards from current emissions at stripping towers. EPA response: (See response to Comment #16 above.) 24) Commenter recommends formal survey for private wells in plume area. EPA response: No formal documentation of EPA's extensive search for existing private wells has been published. Neither EPA, the various state agencies involved, nor local agencies have succeeded in locating any wells other than those noted in the RI/FS. Efforts taken by EPA include: 1) Identification of all wells registered with the state (and San Bernardino County which has been delegated authority for well registration), 2) Review of searches by Cal EPA-DTSC and the Regional Water Quality Control Board during the 1980's, 3) Close communication with local water supply agencies, 4) Repeated requests for information from the public made during numerous public meetings and in interviews with print electronic media, 5) Review of historical aerial photos for land use and land development patterns, 6) Analysis of a 1945 report/map locating all wells known at the time (this is entered in the administrative record and available at the repositories). from an infeasible door-to-door search, the effort to locate private wells has been exhaustive. EPA will continue to take every effort to locate private wells in the area of the plume, and will conduct a similar search for wells in the Muscoy area. 25) Commenter (Bret Raines) asserts that water supply wells do not provide adequate data for risk assessment. EPA response: EPA has acknowledged in the RI that the use of water quality data from water production wells (in addition to data from wells designed solely for water quality monitoring) increases the uncertainty of the calculated risk values. Use of these data (sampled, analyzed and validated by EPA) was justified by a number of considerations, including: 1) Careful analysis of the lithology (geologic structure) at nearby monitoring wells showed no barrier to vertical flow in the contaminated area; 2) The values from production wells corresponded with the highest values from nearby monitoring wells both at the Newmark wellfield and the Electric Avenue(monitoring)/Leroy(production) well area; 3) The history of contaminant levels in production wells at the leading edge of the plume indicates recent arrival of contaminants, and relatively low concentrations would be expected; 4) Values from production wells would tend to be underestimates. The decision to take this action would not be affected even if the VOC concentration were greater and the calculated risk levels were higher. 26) Commenter states that radionuclide buildup in GAC and radon emissions from stripping tower was inadequately addressed in proposed plan. EPA response: A recent EPA analysis of this issue form the geologically similar San Fernando Valley Superfund sites has been included in the Administrative record for the Newmark OU. There is potential for buildup of short half-life radionuclides in GAC units which will be readily addressed with relatively minor design considerations. 27) Commenter notes that numerical cleanup standards are not explicitly established. EPA response: Cleanup standards for the aquifer are not established in an interim action ROD. Treatment standards for VOCs in the extracted water are explicitly established at the MCL or more stringent state drinking water standards. 28) Commenter suggests that if injection wells are outside the plume, state anti-degradation regulations would not be met. EPA response: Alternative 5, the contingency for reinjection if negotiations with water supply agencies fail, would seek to reinject treated water near the edge of the plume, although not necessarily at the most downgradient edge. EPA has not identified the location of reinjection wells which would meet these desired criteria with certainty, although the eastern edge of the plume was used in the FS for the sake of analysis. The state anti-degradation regulations (State Water Board Resolution 68-16) is an ARAR for this remedy and as such will be complied with if the reinjection contingency is necessary. If the injection wells must be located in an area that is clearly off-site, the action must comply with all legal regulations at the time of the activity. 29) Commenter believes that "Approved RI" format was not followed. (Presumably referring to EPA RI guidance documents.) EPA response: The Newmark RI/FS has been consistent with EPA policies and guidance. Use of guidance is subject to site specific considerations and are not absolutely prescriptive. The Newmark RI/FS process was streamlined whenever possible without compromising the decision selection, in agreement with current EPA policy. 30) Commenter feels that inadequate data was collected to support model assumptions. EPA response: The flow model used for the limited purposes of the Newmark RI/FS met accepted standards of calibration and verification. This project was quite fortunate to be able to subject the analysis to scrutiny by local and national experts in hydrogeology. The general behavior of the EPA model was consistent with the conceptual understanding of these experts and with independent efforts to model the basin. Additional data will be considered as it becomes available, and the model will be revised as necessary. However, EPA is satisfied with the model as an analytical tool for this phase of the project. 31) Commenter feels that the ARARs review is inadequate. EPA response: The ARARS review for federal regulations compares favorably with the thoroughness of ARARS reviews for other recent California groundwater Superfund sites. It is the responsibility of the state to identify and justify potential state ARARS. The state's analysis for Newmark OU ARARS was quite thorough. 32) Commenter expresses opinion that Newmark project is inconsistent with other Superfund sites in the state, particularly sites at which USEPA is not the lead. EPA response: The decision-making process and the remedy selected for the Newmark OU is quite similar to other recent groundwater contamination Superfund sites in southern California and alluvial basin sites in Arizona. EPA staff for the San Fernando Valley, San Gabriel Valley and Indian Bend Wash (Arizona) sites have provided invaluable advice and consultation to the Newmark project. 33) Commenter recommends further investigation prior to any action. EPA response: Aside from this commenter, state and public comments are supportive of rapid implementation of the selected remedy for the Newmark OU. EPA has conducted a thorough technical and administrative analysis of the Newmark project and has determined that sufficient information is available to support the selected remedy. ## RESPONSIVENESS SUMMARY - PART II Questions and comments from Public meeting held April 14, 1993 Jeff Wright 1) Requests two week extension to public comment period. EPA response: This request was granted. (See response to Comment #18 in Part I above.) 2) Expresses concern over air stripping without emission control. EPA response: EPA agrees with the concern expressed and will comply with South Coast Air Quality Management District emission regulations if air stripping is implemented. (See response to Comment #11 in Part I above.) 3) Questions effectiveness of Carbon Filtration (liquid GAC). EPA response: This technology has been used for treating water supplies contaminated with PCE and TCE throughout the country for many years, and is considered quite reliable. Currently, several GAC treatment systems are operating satisfactorily in the San Bernardino area to treat contaminated public water supply. 4) How often is carbon changed? EPA response: The carbon is changed when its adsorption capability declines and it cannot provide the desired treatment of the water. The major factors affecting the time for changing the carbon are the concentration of the incoming water and the flow rate of the water through the carbon. The system is carefully monitored, and the carbon is changed before there can be any compromise in the effectiveness of the treatment. EPA estimates that the carbon would need to be changed approximately every nine months at the rates and concentrations assumed in the Feasibility Study. Current operations in San Bernardino (treating lower concentrations) have required a single change of carbon after nearly two years. 5) Concern over disposal of spent carbon, transfer of contamination to another medium (carbon), and eventual incineration. EPA has decided to pursue a modification of the EPA response: conventional treatment technologies (which do not destroy or recycle the contaminants) which would chemically destroy a large percentage of the contaminants. This innovative modification will need to be tested during the design phase. Additionally, the state and local agencies have had recent success in testing a method to recapture contaminants from the emissions of air strippers. EPA will comply with the Best Available Control Technology (BACT) requirement
for air stripper emissions, and expects that this new technology will become the BACT for this project. 6) Supports remedy that destroys or recycles contaminants. EPA response: See response to previous comment, #6 in Part II, above. John Stevens 7) Would like more information on health effects of PCE and TCE, and particularly long term exposure effects. EPA response: See response to Comment #15, in Part I above. 8) Questions protectiveness of 5 parts per billion (ppb) of PCE and TCE in the treated drinking water. EPA response: Using assumptions that would tend to overestimate the risk, EPA has calculated that meeting the federal and state drinking water standards for PCE and TCE (both established at 5 ppb) would bring the carcinogenic risk from drinking water into the range of one in a million. This is within the level defined as "acceptable". The actual treatment levels achieved will be closely monitored and the information will be available to the public. 9) Questions whether effects in San Bernardino have been studied. EPA response: The incidence of cancer in San Bernardino and other communities is monitored in a Cancer Registry, which are reviewed by state and local public health agencies and by national health agencies where Superfund sites are involved. Results of this monitoring effort have not shed any light on effects of this contamination. It is difficult to detect a definite trend of increased cancer incidence in a community without much more data than has been collected to date, and it is even more difficult to relate cancer incidence with a possible cause (such as contaminated water). 10) Comments that information on toxicological effects should be made widely available to San Bernardino residents. EPA response: See response to Comment #15 in Part I above, and response to Comment #8 in Part II. Tim Ayr 11) Would like more information about the source of contamination (particularly Camp Ono). EPA response: See response to Comment #12 in Part I above. 12) Is there any information about unregistered wells? EPA response: See response to Comment #24 in Part I above. 13) Is there a short-term health threshold for PCE and TCE? EPA response: Most short-term health thresholds for these potential e i 🥻 carcinogens have been established for concentrations in the air rather than in drinking water. The U.S. Department of Health and Human Services, National Occupational Safety Institute for and Health, published concentrations that are "Immediately dangerous to Life or Health" at 500 parts per million for PCE and 1000 ppm for TCE. Permissible Exposure Limits, which are not to be exceeded during any 8-hour work shift, have been established by OSHA at 25 ppm for PCE and 50 ppm for TCE. EPA has calculated Removal Action Levels (levels for which a 7 year exposure in drinking water would not present an unacceptable risk) for PCE at 70 parts per billion and for TCE at 300 parts per billion. 14) Would PCE and TCE be vertically distributed in the aguifer? EPA response: When these compounds are not dissolved in water, both would tend to sink since they are more dense than water. When either PCE or TCE are released into the soil above the groundwater, the upper portion of the groundwater would be contaminated first, and then deeper parts of the aquifer will be affected as the contaminants sink deeper. Eventually (after many years) the PCE and TCE might be expected to form a pool at the bottom of the Once the contaminants are dissolved in the water (a aquifer. fairly slow process) the contaminated water would tend to spread laterally, rather than vertically, unless pumping or recharge caused a vertical gradient. 15) How fast is the contamination moving? EPA response: The leading edge of the contaminant plume may be moving as fast as the water is moving in the aquifer. estimated that the groundwater velocity ranges from about 180 feet per year (0.51 ft/day) near the Newmark Wells, to 573 ft/year just east of Little Mountain, and about 310 ft/year in the lower twothirds of the plume. (See Section 6 of the Remedial Investigation Report) 16) Are there other contaminants besides PCE and TCE? Would chemical mixtures form new contaminants? EPA response: EPA has detected a number of other compounds related to PCE and TCE, which may be expected in these solvent mixtures from the original manufacturing process or the pattern of solvent None of the compounds were detected in use and disposal. exceptionally high concentrations. (See the RI Report.) There does not appear to be evidence of reactions occurring from the mixing of these compounds or other potential waste chemicals. 17) Is the water served in San Bernardino safe to drink? See response to Comment #8 in Part II above. EPA response: Eric Piehl 18) Is there a threat to residents living above the plume? EPA response: EPA's investigations have not shown a measurable exposure of the groundwater contaminants to the population living directly above the groundwater contaminant plume at the Newmark site. 19) Is disclosure of the project required when selling a house above the plume? EPA response: There are certain State of California disclosure requirements for conditions which would affect property values. A real estate agent or attorney should be able to advise how these regulations apply in San Bernardino. The size of the Newmark plume would mean that a large portion of San Bernardino (and perhaps neighboring communities outside the city limits) are within or near the Superfund site, even though the exposure threat is minimal (see previous response). 20) Recommends emission control of Newmark air stripping towers. EPA response: See response to Comment #11 in Part I above. 21) How often is carbon (liquid GAC) changed? EPA response: See response to Comment #4 in Part II above. 22) How is spent carbon disposed? EPA response: There are a number of ways that carbon is dealt with after it has exhausted its ability to treat contaminated water. The "spent carbon" is often treated at very high temperatures to burn off the contaminants while regenerating the carbon. Another method is to burn the carbon and the contaminants together (often as a fuel source for power generation). The City of San Bernardino has used this method recently, shipping the used carbon to Kansas City. Another common and currently legal option is to dispose of the carbon in a licensed landfill. 23) Are other chemicals formed during incineration of spent carbon? EPA response: If the incineration is conducted properly, formation of chemical by-products should be negligible. 24) Will water treatment systems clean up water to better than MCLs? EPA response: See response to Comment #8 in Part II above. 25) Expresses concern over limited distribution of treated water due to water agency facilities and policies. EPA response: See response to Comment #19 in Part I above. 26) Recommends consideration of direct use of imported water rather than recharge to a contaminated aquifer. EPA response: See response to Comment #20 in Part I above. Helen Kopczynski . . . 27) What storage facilities will be required for treated water while deciding whether to reinject or convey to public supply? EPA response: The decision to reinject or not will be made before the system is constructed, and no storage facility will be required. 28) Which water supply system will receive the treated water? EPA response: There have been no commitments made by EPA or any water supply agency. EPA's current expectations are that a large portion of the treated water would be accepted by the San Bernardino Water Department, with the remainder by several other local agencies in the San Bernardino area. See the letters from these agencies referred to in Comments #1 through 8 in Part I above. 29) Have these treatment systems been used before in public water supply situations? EPA response: See response to Comment #3 in Part II above. 30) Operation and location of injection wells is unclear. EPA response: The general potential location of injection wells was suggested in the Feasibility Study Report. It must be noted that the exact location of any of the facilities that may be constructed will depend on additional information to be gathered during the design phase of the project. Some important considerations for location of injection wells are discussed in the response to Comment #28 in Part I above. 31) Locations for all the proposed actions are not clearly explained. EPA response: As discussed in the previous response, EPA suggested some potential locations for facilities. More precise locations will be dependent on additional information to be gathered during the design phase. Since gathering such information is time-consuming and costly, EPA seeks public comment on the range of alternatives considered before selecting which remedy (or set of remedies) to continue into the design phase. 32) Operating costs for the remedies seems high. EPA response: The Newmark Superfund site is an enormously large site with vast quantities of water involved. Additionally, the project is likely to be in operation for 30 years or more. The cost to society of the loss of this resource (the aquifer in the San Bernardino Valley) is much greater than the cost of this project, without consideration of the possible health risks of the spreading contaminant plume. EPA's cost estimates are not precise since the final design contains a number of uncertainties. The analyses to develop the costs have been quite thorough given these limitations. (See the Feasibility Study report for the detailed analyses.) Among the factors which may change the operating costs are efficiencies which may be realized by allowing the local water departments to operate the system. EPA is also expecting that the value of the treated water can be agreed upon in negotiations with the water departments, and a portion of this value reimbursed to the cleanup project (either directly or indirectly). 33) Cost for this
OU should be spent on source identification and control. EPA response: EPA agrees that source identification and control is an essential goal and has committed a substantial budget to these tasks. Initiating the Newmark OU interim action is not expected to interfere with progress on the source investigation. ## Sharon Coffelt 34) Is the contamination that is entering the Newmark OU area from the west flowing around the hills, between the hills or through the hills? EPA response: The flow of contaminated groundwater has been traced to the gap between Wiggins Hill to the north (Wiggins is the name of the hill north of the intersection of Kendall and University Parkway) and Shandin Hills (Little Mountain) to the south. The hills themselves are formed from material that is not expected to permit significant water flow. 35) Will the natural hot water from parts of this aquifer impact the project? EPA response: The contaminants are not expected to reach the parts of the aquifer where natural thermal water exists. Both PCE and TCE are relatively stable, with boiling points around 200° F. 36) EPA has provided helpful information. EPA response: EPA is grateful for comments from the community. See response to Comment #9 in Part I above. List of Deliverables for Newmark Operable Unit-Remedial Action Newmark Groundwater Contamination Superfund Site, San Bernardino, CA Construction Progress Reports Prefinal Inspection Reports Remedial Action Report (Final inspection and certification report) Monitoring and Operations Reports Five-Year Remedial Action Reviews